Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini observations present glimpse into Titan’s relationship with Earth

13.05.2005


Observations of Titan’s atmosphere offer a unique look at how Saturn’s giant moon compares to Earth.



Titan is the only moon in the solar system with a substantial atmosphere. Like Earth, Titan’s atmosphere is primarily composed of nitrogen, but unlike Earth, one of the most abundant constituents is methane (CH4). The Huygens probe will determine if the abundance of argon exceeds that of methane. Methane, the main component in natural gas, plays a key role in the make-up of atmospheric conditions on Titan.

The organic chemistry that occurs in Titan’s atmosphere is an analog of the processes that may have been present in the early terrestrial atmosphere. The research appears in the May 13 edition of the journal Science. Using an infrared spectrometer on the Cassini-Huygens Spacecraft, researchers have measured the temperature, winds and chemical composition of Titan.


Edward Wishnow of Lawrence Livermore National Laboratory participated in the research by measuring the spectrum of methane in the laboratory at temperatures and densities similar to Titan’s - about 113 Kelvin (-256 degrees F) and about one atmosphere pressure. The measurements were performed with a unique spectrometer and cryogenic gas absorption cell in collaboration with H. Gush and I. Ozier at the University of British Columbia, and G. Orton at the Jet Propulsion Lab.

"Titan’s spectrum shows sharp emission lines that arise due to methane in the stratosphere that is warmer than the underlying denser atmospheric layers," Wishnow said. The correspondence between the lab and Titan spectra is obvious and the strength of the laboratory lines is used to ascertain the abundance of methane in Titan’s upper atmosphere, he said.

The Cassini Composite Infrared Spectrometer (CIRS) is an instrument that measures the intensity of far-infrared radiation, light with wavelengths between those of radar and near-infrared light. These wavelengths are associated with radiation emission by the constituent gases of Titan’s atmosphere. Other researchers on the project discovered that Titan exhibits seasonal changes in its stratospheric temperatures and winds that are similar to Earth’s.

"Part of the exhilaration of our scientific exploration comes from understanding how Titan is similar to Earth as well as how it differs," said CIRS principal investigator F. Michael Flasar of NASA/Goddard Space Flight Center. "The CIRS observations of Titan’s stratosphere indicate that its winter (northern) pole has many properties in common with Earth’s: cold temperatures, strong circumpolar winds and anomalous concentrations of several compounds (on Titan, organic molecules) that are reminiscent of conditions within the winter polar regions on Earth, the so-called ozone holes. In both cases the essential ingredient is the strong winds, which isolate the polar air and inhibit mixing with that at lower latitudes."

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>