Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini observations present glimpse into Titan’s relationship with Earth

13.05.2005


Observations of Titan’s atmosphere offer a unique look at how Saturn’s giant moon compares to Earth.



Titan is the only moon in the solar system with a substantial atmosphere. Like Earth, Titan’s atmosphere is primarily composed of nitrogen, but unlike Earth, one of the most abundant constituents is methane (CH4). The Huygens probe will determine if the abundance of argon exceeds that of methane. Methane, the main component in natural gas, plays a key role in the make-up of atmospheric conditions on Titan.

The organic chemistry that occurs in Titan’s atmosphere is an analog of the processes that may have been present in the early terrestrial atmosphere. The research appears in the May 13 edition of the journal Science. Using an infrared spectrometer on the Cassini-Huygens Spacecraft, researchers have measured the temperature, winds and chemical composition of Titan.


Edward Wishnow of Lawrence Livermore National Laboratory participated in the research by measuring the spectrum of methane in the laboratory at temperatures and densities similar to Titan’s - about 113 Kelvin (-256 degrees F) and about one atmosphere pressure. The measurements were performed with a unique spectrometer and cryogenic gas absorption cell in collaboration with H. Gush and I. Ozier at the University of British Columbia, and G. Orton at the Jet Propulsion Lab.

"Titan’s spectrum shows sharp emission lines that arise due to methane in the stratosphere that is warmer than the underlying denser atmospheric layers," Wishnow said. The correspondence between the lab and Titan spectra is obvious and the strength of the laboratory lines is used to ascertain the abundance of methane in Titan’s upper atmosphere, he said.

The Cassini Composite Infrared Spectrometer (CIRS) is an instrument that measures the intensity of far-infrared radiation, light with wavelengths between those of radar and near-infrared light. These wavelengths are associated with radiation emission by the constituent gases of Titan’s atmosphere. Other researchers on the project discovered that Titan exhibits seasonal changes in its stratospheric temperatures and winds that are similar to Earth’s.

"Part of the exhilaration of our scientific exploration comes from understanding how Titan is similar to Earth as well as how it differs," said CIRS principal investigator F. Michael Flasar of NASA/Goddard Space Flight Center. "The CIRS observations of Titan’s stratosphere indicate that its winter (northern) pole has many properties in common with Earth’s: cold temperatures, strong circumpolar winds and anomalous concentrations of several compounds (on Titan, organic molecules) that are reminiscent of conditions within the winter polar regions on Earth, the so-called ozone holes. In both cases the essential ingredient is the strong winds, which isolate the polar air and inhibit mixing with that at lower latitudes."

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>