Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Chicago instrument detects particles near Saturn’s moon Enceladus

27.04.2005


Debris could be dust cloud around the moon


Saturn’s moon Enceladus. Image credit: NASA/JPL/Space Science Institute.



An instrument designed and built at the University of Chicago for the Cassini space probe has discovered dust particles around Enceladus, an ice-covered moon of Saturn that has the distinction of being the most reflective object in the solar system. The particles could indicate the existence of a dust cloud around Enceladus, or they may have originated from Saturn’s largest ring, the E-ring.

"We are operating on the plane of the E-ring, and things are very complicated there," said Thanasis Economou, a Senior Scientist at the University of Chicago’s Enrico Fermi Institute. "It will take a few more flybys to distinguish the dust flux originating from the E-ring as opposed to one around Enceladus."


The discovery is the first for the Chicago instrument, called the High Rate Detector. "During all this time from Earth to Saturn, we didn’t have any real test of the instrument. I was very happy to see that the instrument performs well after so many years," Economou said.

The National Aeronautics and Space Administration launched Cassini, an international mission involving 17 nations, in October 1997. Last July, after a journey of 2.2 billion miles, Cassini became the first spacecraft to orbit Saturn.

Cassini scientists regard Enceladus as an increasingly interesting target. So much so that mission planners are revising the altitude of the next flyby to get a closer look. Additional Cassini encounters with Enceladus are scheduled for July 14, 2005, and March 12, 2008. The July 14 flyby was to be at an altitude of 620 miles, but the mission team now plans to lower that altitude to 109 miles. This will be Cassini’s lowest-altitude flyby of any object in the scheduled four-year tour.

Cassini encountered Enceladus at an altitude of 733 miles on Feb. 17. On that date, the Chicago instrument recorded thousands of particle hits during a period of 37 and a half minutes. Cassini executed another flyby of Enceladus on March 9 at an altitude of 311 miles. "Again we observed a high stream of dust particles," Economou said.

The largest particles detected by the Chicago instrument measure no more than the diameter of a human hair-too small to pose any danger to Cassini. "Our measurements are important to evaluate any risk to the spacecraft," Economou said.

The HRD is part of a larger instrument, the Cosmic Dust Analyzer, which with further analysis may be able to determine whether the particles are made of ice or dust. Enceladus measures 310 miles in diameter and reflects nearly 100 percent of the light that hits its ice-covered surface.

"If you look at the surface on Enceladus, it’s very smooth," Economou said, and varies little in altitude. Scientists have speculated that Enceladus is the source of Saturn’s E-ring, the planet’s widest, stretching 188,000 miles. It is possible, the scientists say, that gravitational interactions between Enceladus and another moon of Saturn have triggered some form of water volcanism.

"The High Rate Detector measurements are extremely important in order to understand the role of Enceladus as the source of the water ice particles in the E-ring," said Ralf Srama of Germany’s Max Planck Institute for Nuclear Physics, who heads the Cosmic Dust Analyzer science team. This study requires precise measurements of dust density in the Enceladus region, "but without the High Rate Detector this would not be possible," Srama said.

Enceladus orbits Saturn at a distance of approximately 147,500 miles, almost two-thirds the distance from Earth to the moon. Only one of Saturn’s 31 known moons is closer to the planet.

The HRD was created by Anthony Tuzzolino, Senior Scientist in the Enrico Fermi Institute, under the direction of the late John Simpson, the Arthur Holly Compton Distinguished Service Professor Emeritus in Physics. The HRD was designed to collect data on Saturn’s rings and is capable of counting up to 100,000 impacts per second.

Cassini carries a total of 12 primary instruments that often must compete with one another so that the orbiter is properly oriented for collecting their data. "We did our best in order to make this happen, and the preparations and negotiations for these encounters were enormous," Srama said. "These were perfect flybys, and we did everything possible."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>