Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative fountain pen writes on the nanoscale


The first practical fountain pen was invented in 1884 by Lewis Waterman. Although pens with self-contained ink reservoirs had existed for more than a hundred years before his invention, they suffered from ink leaks and other troubles. Waterman solved these problems by inventing the capillary feed which produced even ink flow. Now fountain pen history is repeating itself in the tiny world of nanoscale writing.

Researchers at Northwestern University have demonstrated writing at the sub-100 nanometer molecular scale in fountain-pen fashion. They developed a novel atomic force microscope (AFM) probe chip with an integrated microfluidic system for capillary feeding of molecular ink. Their results are published online by Small, a new journal dedicated to breakthroughs in nanoscience and engineering (

Dip-pen nanolithography (DPN) has been well-known for its capability of high-resolution direct writing as a bottom-up nanofabrication technique. The DPN technique exploits controlled deposition of molecules from an AFM tip to a surface. However, the need of replenishing ink whenever exhausted has been a limiting feature. Various attempts have been reported to overcome such a drawback, but none of them reached molecular patterns with features smaller than 100 nanometers.

The Nanofountain Probe (NFP) developed by Horacio D. Espinosa, professor of mechanical engineering, and his colleagues employs a volcano-like dispensing tip and capillary fed solutions to enable sub-100 nanometer molecular writing. The NFP was microfabricated on a chip to be mounted on commercially available AFMs. The device consists of an on-chip reservoir, microchannels and a volcano-like dispensing tip. The microchannels are embedded in the AFM cantilevers of the chip and the volcano dispensing tip has an annular aperture to guide ink dispensing. The ink on the reservoir is driven through the microchannel via capillary action to reach the dispensing tip. At present, the smallest feature width achieved with the device is 40 nanometers.

The standard microfabrication techniques used for the NFP chip -- an important feature of this development -- provides scalability to massively parallel arrays of probes and reservoirs for high throughput patterning with multiple molecular inks.

"The writing capability of such NFP arrays with chemical and bimolecular inks in fountain-pen mode is unique," said Espinosa. "We believe the technology will likely lead to many high-impact applications in the field of nanosensors, biotechnology and pharmaceuticals."

In addition to Espinosa, other authors on the Small paper are graduate student Keun-Ho Kim and research assistant professor of mechanical engineering Nicolaie A. Moldovan, both from Northwestern.

Megan Fellman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>