Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative fountain pen writes on the nanoscale

27.04.2005


The first practical fountain pen was invented in 1884 by Lewis Waterman. Although pens with self-contained ink reservoirs had existed for more than a hundred years before his invention, they suffered from ink leaks and other troubles. Waterman solved these problems by inventing the capillary feed which produced even ink flow. Now fountain pen history is repeating itself in the tiny world of nanoscale writing.



Researchers at Northwestern University have demonstrated writing at the sub-100 nanometer molecular scale in fountain-pen fashion. They developed a novel atomic force microscope (AFM) probe chip with an integrated microfluidic system for capillary feeding of molecular ink. Their results are published online by Small, a new journal dedicated to breakthroughs in nanoscience and engineering (http://dx.doi.org/10.1002/smll.200500027).

Dip-pen nanolithography (DPN) has been well-known for its capability of high-resolution direct writing as a bottom-up nanofabrication technique. The DPN technique exploits controlled deposition of molecules from an AFM tip to a surface. However, the need of replenishing ink whenever exhausted has been a limiting feature. Various attempts have been reported to overcome such a drawback, but none of them reached molecular patterns with features smaller than 100 nanometers.


The Nanofountain Probe (NFP) developed by Horacio D. Espinosa, professor of mechanical engineering, and his colleagues employs a volcano-like dispensing tip and capillary fed solutions to enable sub-100 nanometer molecular writing. The NFP was microfabricated on a chip to be mounted on commercially available AFMs. The device consists of an on-chip reservoir, microchannels and a volcano-like dispensing tip. The microchannels are embedded in the AFM cantilevers of the chip and the volcano dispensing tip has an annular aperture to guide ink dispensing. The ink on the reservoir is driven through the microchannel via capillary action to reach the dispensing tip. At present, the smallest feature width achieved with the device is 40 nanometers.

The standard microfabrication techniques used for the NFP chip -- an important feature of this development -- provides scalability to massively parallel arrays of probes and reservoirs for high throughput patterning with multiple molecular inks.

"The writing capability of such NFP arrays with chemical and bimolecular inks in fountain-pen mode is unique," said Espinosa. "We believe the technology will likely lead to many high-impact applications in the field of nanosensors, biotechnology and pharmaceuticals."

In addition to Espinosa, other authors on the Small paper are graduate student Keun-Ho Kim and research assistant professor of mechanical engineering Nicolaie A. Moldovan, both from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>