Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative fountain pen writes on the nanoscale

27.04.2005


The first practical fountain pen was invented in 1884 by Lewis Waterman. Although pens with self-contained ink reservoirs had existed for more than a hundred years before his invention, they suffered from ink leaks and other troubles. Waterman solved these problems by inventing the capillary feed which produced even ink flow. Now fountain pen history is repeating itself in the tiny world of nanoscale writing.



Researchers at Northwestern University have demonstrated writing at the sub-100 nanometer molecular scale in fountain-pen fashion. They developed a novel atomic force microscope (AFM) probe chip with an integrated microfluidic system for capillary feeding of molecular ink. Their results are published online by Small, a new journal dedicated to breakthroughs in nanoscience and engineering (http://dx.doi.org/10.1002/smll.200500027).

Dip-pen nanolithography (DPN) has been well-known for its capability of high-resolution direct writing as a bottom-up nanofabrication technique. The DPN technique exploits controlled deposition of molecules from an AFM tip to a surface. However, the need of replenishing ink whenever exhausted has been a limiting feature. Various attempts have been reported to overcome such a drawback, but none of them reached molecular patterns with features smaller than 100 nanometers.


The Nanofountain Probe (NFP) developed by Horacio D. Espinosa, professor of mechanical engineering, and his colleagues employs a volcano-like dispensing tip and capillary fed solutions to enable sub-100 nanometer molecular writing. The NFP was microfabricated on a chip to be mounted on commercially available AFMs. The device consists of an on-chip reservoir, microchannels and a volcano-like dispensing tip. The microchannels are embedded in the AFM cantilevers of the chip and the volcano dispensing tip has an annular aperture to guide ink dispensing. The ink on the reservoir is driven through the microchannel via capillary action to reach the dispensing tip. At present, the smallest feature width achieved with the device is 40 nanometers.

The standard microfabrication techniques used for the NFP chip -- an important feature of this development -- provides scalability to massively parallel arrays of probes and reservoirs for high throughput patterning with multiple molecular inks.

"The writing capability of such NFP arrays with chemical and bimolecular inks in fountain-pen mode is unique," said Espinosa. "We believe the technology will likely lead to many high-impact applications in the field of nanosensors, biotechnology and pharmaceuticals."

In addition to Espinosa, other authors on the Small paper are graduate student Keun-Ho Kim and research assistant professor of mechanical engineering Nicolaie A. Moldovan, both from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>