Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JLab, College of W&M researchers study radiation blockers

22.04.2005


JLab, College of W&M researchers study radiation blockers while conducting nuclear imaging of Iodine uptake in mouse tissues



Scientists have found that a dose five times higher than the FDA-recommended dosage of potassium iodide in the event of a nuclear accident is needed to protect small animals effectively from radioactive iodide in medical imaging procedures. The long-term animal nuclear imaging project is being conducted by a collaboration of biology and physics researchers from the Department of Energy’s Jefferson Lab and The College of William & Mary (CWM).

The research was conducted at the CWM with a Jefferson Lab and CWM-built medical imaging system to perform investigational studies of mice. Bob Welsh, a JLab/CWM jointly appointed professor, is one researcher working on the project. The research demonstrates that scientists can learn about how the body uses certain substances of interest - such as insulin, the fat-regulating protein leptin and a wide range of other biological compounds - by tracking how these substances move through the body of a mouse.


"The way we follow those substances is to attach to them a radioactive isotope of iodine, Iodine-125. Iodine-125 emits a low-energy gamma ray," Welsh says, "It’s not a tremendous amount of energy, but it’s easy to track with these very precise detectors that have been designed and built by the Jefferson Lab Detector Group."

The thyroid needs iodine to regulate metabolism and is unable to distinguish between regular dietary iodine and ingested radioactive iodine. So the researchers weren’t surprised when, in the course of the project, they noticed that the mice subjects’ thyroids always absorbed a significant amount of radioactive iodine. In addition to being potentially bad for the mouse, the thyroid’s absorption of radioactive iodine made the images difficult to interpret and could provide false-positive readings or possibly obscure substantial iodine uptake in nearby tissues.

The team decided to test what would happen if they gave the mice potassium iodide, the FDA-recommended drug for blocking radioactive iodine absorption by the thyroid in the event of a nuclear accident, before exposing the mice to a form of radioiodine used in imaging studies. CWM undergraduate William Hammond, who will be presenting the team’s findings at the American Physical Society (APS) April Meeting, Session E12.0004, participated in this phase of the research for his senior thesis project.

The researchers started with the potassium iodide dose that’s recommended for humans in the event of a nuclear incident, 130 mg (milligrams), and scaled that down to the mass of the mouse. They administered a liquid form of the drug to mice, injected the radioiodine for imaging an hour later, and then imaged the mouse.

"What we noticed was this: the dose that was exactly the scaled human dose did not completely block the uptake of radioiodine. But when we tried three times, five times, ten times the scaled human dose, we obtained results that indicate that ten times the human dose blocks 1.5-2 times better, though five times is just about as good as ten times," Welsh says.

The researchers recognized that the extra benefit gained by the largest potassium iodide dose administered could in some cases be outweighed by potential side effects. To protect their mice in future imaging studies, they’re planning to use the potassium iodide dose that’s five times the scaled-down human dose.

As for larger implications, the study should not simply be scaled-up and applied to humans. "It could say that a mouse’s metabolism is so different from a human’s that you can’t just scale the human dose down for mice. But when it comes to small animals, I think the results should be taken into consideration," Welsh notes.

This research was made possible by a collaboration of Jefferson Lab and College of William researchers, including CWM physicists Robert Welsh, Julie Cella, Coleen McLoughlin, Kevin Smith and William Hammond; CWM biologists Eric Bradley and Margaret Saha; CWM applied science graduate student Jianguo Qian; and Jefferson Lab Detector Group scientists Stan Majewski, Vladimir Popov, Mark Smith and Drew Weisenberger.

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>