Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JLab, College of W&M researchers study radiation blockers

22.04.2005


JLab, College of W&M researchers study radiation blockers while conducting nuclear imaging of Iodine uptake in mouse tissues



Scientists have found that a dose five times higher than the FDA-recommended dosage of potassium iodide in the event of a nuclear accident is needed to protect small animals effectively from radioactive iodide in medical imaging procedures. The long-term animal nuclear imaging project is being conducted by a collaboration of biology and physics researchers from the Department of Energy’s Jefferson Lab and The College of William & Mary (CWM).

The research was conducted at the CWM with a Jefferson Lab and CWM-built medical imaging system to perform investigational studies of mice. Bob Welsh, a JLab/CWM jointly appointed professor, is one researcher working on the project. The research demonstrates that scientists can learn about how the body uses certain substances of interest - such as insulin, the fat-regulating protein leptin and a wide range of other biological compounds - by tracking how these substances move through the body of a mouse.


"The way we follow those substances is to attach to them a radioactive isotope of iodine, Iodine-125. Iodine-125 emits a low-energy gamma ray," Welsh says, "It’s not a tremendous amount of energy, but it’s easy to track with these very precise detectors that have been designed and built by the Jefferson Lab Detector Group."

The thyroid needs iodine to regulate metabolism and is unable to distinguish between regular dietary iodine and ingested radioactive iodine. So the researchers weren’t surprised when, in the course of the project, they noticed that the mice subjects’ thyroids always absorbed a significant amount of radioactive iodine. In addition to being potentially bad for the mouse, the thyroid’s absorption of radioactive iodine made the images difficult to interpret and could provide false-positive readings or possibly obscure substantial iodine uptake in nearby tissues.

The team decided to test what would happen if they gave the mice potassium iodide, the FDA-recommended drug for blocking radioactive iodine absorption by the thyroid in the event of a nuclear accident, before exposing the mice to a form of radioiodine used in imaging studies. CWM undergraduate William Hammond, who will be presenting the team’s findings at the American Physical Society (APS) April Meeting, Session E12.0004, participated in this phase of the research for his senior thesis project.

The researchers started with the potassium iodide dose that’s recommended for humans in the event of a nuclear incident, 130 mg (milligrams), and scaled that down to the mass of the mouse. They administered a liquid form of the drug to mice, injected the radioiodine for imaging an hour later, and then imaged the mouse.

"What we noticed was this: the dose that was exactly the scaled human dose did not completely block the uptake of radioiodine. But when we tried three times, five times, ten times the scaled human dose, we obtained results that indicate that ten times the human dose blocks 1.5-2 times better, though five times is just about as good as ten times," Welsh says.

The researchers recognized that the extra benefit gained by the largest potassium iodide dose administered could in some cases be outweighed by potential side effects. To protect their mice in future imaging studies, they’re planning to use the potassium iodide dose that’s five times the scaled-down human dose.

As for larger implications, the study should not simply be scaled-up and applied to humans. "It could say that a mouse’s metabolism is so different from a human’s that you can’t just scale the human dose down for mice. But when it comes to small animals, I think the results should be taken into consideration," Welsh notes.

This research was made possible by a collaboration of Jefferson Lab and College of William researchers, including CWM physicists Robert Welsh, Julie Cella, Coleen McLoughlin, Kevin Smith and William Hammond; CWM biologists Eric Bradley and Margaret Saha; CWM applied science graduate student Jianguo Qian; and Jefferson Lab Detector Group scientists Stan Majewski, Vladimir Popov, Mark Smith and Drew Weisenberger.

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>