Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HAPPEx results hint at strangely magnetic proton

21.04.2005


New results from research performed at the Department of Energy’s Jefferson Lab hint that strange quarks may contribute to the proton’s magnetic moment. If confirmed by data to be taken later this year, these surprising results would indicate that strange quarks in the proton’s quark-gluon sea contribute to at least one of the proton’s intrinsic properties. The HAPPEx results strengthen the trend found by the SAMPLE experiment at MIT-Bates and the A4 experiment at the Mainz Laboratory in Germany. Results are being presented by University of Massachusetts at Amherst Physicist Krishna Kumar at the APS (American Physical Society) April Meeting Plenary Session Q0.00003.



Kumar is a Jefferson Lab user and a co-spokesperson on the Hall A Proton Parity Experiment (HAPPEx). The experiment measures the neutral weak force between a beam of electrons and target nuclei at a length scale of around one femtometer (roughly the size of a proton or neutron). These measurements will help physicists learn about the strong force that binds up and down quarks into protons and neutrons (nucleons) and the up, down and strange quark contributions to the nucleon’s charge and current distributions.

In the experiment, HAPPEx researchers sent a polarized beam of electrons into hydrogen and Helium-4 nuclei. The researchers alternated the electron beam’s polarization (spin) throughout the experiment. The electromagnetic force is mirror-symmetric (the electrons’ spin will not affect the number of electrons scattered), while the weak force is not (electrons polarized one way will interact differently than electrons spinning oppositely). So measuring the fractional difference in the number of scattered electrons due to the beam’s changing polarization allowed the researchers to calculate the neutral weak force.


According to Kumar, the results indicate that the strange quark contribution to the nucleon’s charge and current distribution is zero within the sensitivity of each measurement. "However, there seems to be a trend towards a positive (non-zero) value for the average contribution of strange quarks to the proton’s magnetic moment. If confirmed with more precise measurements, such a conclusion would be surprising and exciting," Kumar notes.

The HAPPEx experiments took data in June and July of 2004, and the final results are being prepared for submission to Physical Review Letters. Kumar says the next stage of HAPPEx may provide further insight. "The HAPPEx measurements will be repeated with higher precision later this year. A statistically significant measurement of a strange quark contribution to the charge and current distributions may be within reach," Kumar says.

Data from several recent experiments, including SLAC’s (the Stanford Linear Accelerator Center) E158, the SAMPLE experiment at MIT-Bates, the A4 experiment at the Mainz Laboratory in Germany, and the G-Zero experiment at Jefferson Lab are beginning to shed further light on the weak interaction.

A white paper of this talk is available in the APS April Meeting 2005 Press Room.

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>