Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HAPPEx results hint at strangely magnetic proton

21.04.2005


New results from research performed at the Department of Energy’s Jefferson Lab hint that strange quarks may contribute to the proton’s magnetic moment. If confirmed by data to be taken later this year, these surprising results would indicate that strange quarks in the proton’s quark-gluon sea contribute to at least one of the proton’s intrinsic properties. The HAPPEx results strengthen the trend found by the SAMPLE experiment at MIT-Bates and the A4 experiment at the Mainz Laboratory in Germany. Results are being presented by University of Massachusetts at Amherst Physicist Krishna Kumar at the APS (American Physical Society) April Meeting Plenary Session Q0.00003.



Kumar is a Jefferson Lab user and a co-spokesperson on the Hall A Proton Parity Experiment (HAPPEx). The experiment measures the neutral weak force between a beam of electrons and target nuclei at a length scale of around one femtometer (roughly the size of a proton or neutron). These measurements will help physicists learn about the strong force that binds up and down quarks into protons and neutrons (nucleons) and the up, down and strange quark contributions to the nucleon’s charge and current distributions.

In the experiment, HAPPEx researchers sent a polarized beam of electrons into hydrogen and Helium-4 nuclei. The researchers alternated the electron beam’s polarization (spin) throughout the experiment. The electromagnetic force is mirror-symmetric (the electrons’ spin will not affect the number of electrons scattered), while the weak force is not (electrons polarized one way will interact differently than electrons spinning oppositely). So measuring the fractional difference in the number of scattered electrons due to the beam’s changing polarization allowed the researchers to calculate the neutral weak force.


According to Kumar, the results indicate that the strange quark contribution to the nucleon’s charge and current distribution is zero within the sensitivity of each measurement. "However, there seems to be a trend towards a positive (non-zero) value for the average contribution of strange quarks to the proton’s magnetic moment. If confirmed with more precise measurements, such a conclusion would be surprising and exciting," Kumar notes.

The HAPPEx experiments took data in June and July of 2004, and the final results are being prepared for submission to Physical Review Letters. Kumar says the next stage of HAPPEx may provide further insight. "The HAPPEx measurements will be repeated with higher precision later this year. A statistically significant measurement of a strange quark contribution to the charge and current distributions may be within reach," Kumar says.

Data from several recent experiments, including SLAC’s (the Stanford Linear Accelerator Center) E158, the SAMPLE experiment at MIT-Bates, the A4 experiment at the Mainz Laboratory in Germany, and the G-Zero experiment at Jefferson Lab are beginning to shed further light on the weak interaction.

A white paper of this talk is available in the APS April Meeting 2005 Press Room.

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>