Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model physics of stellar burning

15.04.2005


University of California scientist at Los Alamos National Laboratory working with astronomers from around the world recently validated a computer model that predicts the rebirth and stellar burning and mixing processes of evolved stars. The discovery is a leap forward in our understanding of how stars like the sun evolve through violent outbursts during their evolution.



In research published recently in the journal Science, Laboratory astrophysicist Falk Herwig and his colleagues describe how Herwig’s computer model was recently corroborated by radio telescope observations made at the Very Large Array (VLA) in Socorro, N.M. The radio signals collected by the VLA indicate that a star in the constellation Sagittarius known as V4334 Sgr, or Sakurai’s Object, is about to re-illuminate it’s planetary nebula for the second time, initiating a new phase in the spectacular evolution of this enigmatic star. This never before seen event is another step in a complex chain of events initially triggered by a nuclear burst after the star had already become a hot white dwarf.

Computer simulations of the stellar outburst made nearly 10 years ago by Herwig and others had predicted this series of physics events that would lead up to the rejuvenated planetary nebula. However, V4334 Sgr failed to follow the script as events moved many times more quickly than the simulations predicted. In 2001, Herwig proposed a new fast-evolving model, claiming the problem may be the way in which nuclear burning and rapid mixing was simulated.


Stars typically evolve into white dwarfs and die when they have used up most of their hydrogen, but about a quarter of them, like V4334 Sgr, experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in the outer regions is drawn into the helium shell through rapid mixing, causing a massive nuclear explosion. This burst of energy will expand the dying star to gigantic proportions and lower surface temperatures and, in the process, expel prodigious amounts of carbon. V4334 Sgr has just evolved through this phase.

Herwig’s new model predicts that V4334 Sgr will now become much hotter very rapidly and will then slowly repeat the stellar rebirth cycle once more, returning to its current cooler temperature in roughly two hundred years. Only then follows the final episode of reheating for a third time before V4334 Sgr eventually will become an inactive cooling white dwarf.

In addition to Herwig, who works in the Laboratory’s Theoretical Division, the stellar burning team included Marcin Hajduk of the University of Manchester and Centrum Astronomii UMK; Peter A.M. van Hoof of Queen’s University in Belfast and the Royal Observatory of Belgium; Florian Kerber of the European Southern Observatory in Germany; Stefan Kimeswenger of the University of Innsbruck, Austria; Don Pollacco of Queen’s University in Belfast; Aneurin Evans of Keele University in Staffordshire, UK; Jose Lopez of the National Autonomous University of Mexico in Ensenada; Myfanwy Bryce of Jodrell Bank Observatory in the UK; Stewart P.S. Eyres of the University of Central Lancashire in the UK; and Albert Zijlstra and Mikako Matsuura of the University of Manchester.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>