Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model physics of stellar burning

15.04.2005


University of California scientist at Los Alamos National Laboratory working with astronomers from around the world recently validated a computer model that predicts the rebirth and stellar burning and mixing processes of evolved stars. The discovery is a leap forward in our understanding of how stars like the sun evolve through violent outbursts during their evolution.



In research published recently in the journal Science, Laboratory astrophysicist Falk Herwig and his colleagues describe how Herwig’s computer model was recently corroborated by radio telescope observations made at the Very Large Array (VLA) in Socorro, N.M. The radio signals collected by the VLA indicate that a star in the constellation Sagittarius known as V4334 Sgr, or Sakurai’s Object, is about to re-illuminate it’s planetary nebula for the second time, initiating a new phase in the spectacular evolution of this enigmatic star. This never before seen event is another step in a complex chain of events initially triggered by a nuclear burst after the star had already become a hot white dwarf.

Computer simulations of the stellar outburst made nearly 10 years ago by Herwig and others had predicted this series of physics events that would lead up to the rejuvenated planetary nebula. However, V4334 Sgr failed to follow the script as events moved many times more quickly than the simulations predicted. In 2001, Herwig proposed a new fast-evolving model, claiming the problem may be the way in which nuclear burning and rapid mixing was simulated.


Stars typically evolve into white dwarfs and die when they have used up most of their hydrogen, but about a quarter of them, like V4334 Sgr, experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in the outer regions is drawn into the helium shell through rapid mixing, causing a massive nuclear explosion. This burst of energy will expand the dying star to gigantic proportions and lower surface temperatures and, in the process, expel prodigious amounts of carbon. V4334 Sgr has just evolved through this phase.

Herwig’s new model predicts that V4334 Sgr will now become much hotter very rapidly and will then slowly repeat the stellar rebirth cycle once more, returning to its current cooler temperature in roughly two hundred years. Only then follows the final episode of reheating for a third time before V4334 Sgr eventually will become an inactive cooling white dwarf.

In addition to Herwig, who works in the Laboratory’s Theoretical Division, the stellar burning team included Marcin Hajduk of the University of Manchester and Centrum Astronomii UMK; Peter A.M. van Hoof of Queen’s University in Belfast and the Royal Observatory of Belgium; Florian Kerber of the European Southern Observatory in Germany; Stefan Kimeswenger of the University of Innsbruck, Austria; Don Pollacco of Queen’s University in Belfast; Aneurin Evans of Keele University in Staffordshire, UK; Jose Lopez of the National Autonomous University of Mexico in Ensenada; Myfanwy Bryce of Jodrell Bank Observatory in the UK; Stewart P.S. Eyres of the University of Central Lancashire in the UK; and Albert Zijlstra and Mikako Matsuura of the University of Manchester.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>