Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce world’s most sensitive cancer test

12.04.2005


A new way of testing cells for cancer can both diagnose and determine the stage of cancer with just 50 tumour cells



Speaking at the Institute of Physics conference Physics 2005 in Warwick today (Tuesday 12th April), scientists will reveal a new test for cancer, more sensitive than any existing technique and capable of predicting for the first time whether a tumour has spread.

Unlike existing techniques which rely on expert visual assessment or unreliable biochemical measurements, the "optical stretcher" tests the physical strength of each cell and can give a diagnosis using as few as 50 cells, allowing doctors to test for cancer where traditional biopsies are dangerous or even impossible. The ability to measure the progress of a cancer by examining only the primary tumour should reduce the number of unnecessary and traumatic mastectomies in women with breast cancer.


Professor Josef Käs and Dr Jochen Guck from the University of Leipzig have been developing the new procedure for several years and today described how the system is being tested, both to screen for oral cancers and in the "staging" of breast cancer tumours.

Professor Käs’ technique for the first time uses a physical characteristic of each cell – its stretchiness or elasticity – instead of its biological make-up, to decide whether or not it’s cancerous. Cancer cells tend to de-differentiate, losing the special characteristics of the organ where they started life. Because of this, they no longer need the rigid cytoskeleton which holds them in shape, making them stretchier than normal cells.

Käs and Guck’s machine uses a powerful beam of infrared laser light to stretch and measure cells one by one. His optical stretcher differs from an existing tool known as optical tweezers in which the light is focused to a sharp point to grab hold of a cell. In contrast, the optical stretcher doesn’t use focused light. This allows laser beams strong enough to detect stretching to be used without killing the cell.

"Of all the physical properties of a cell," explains Professor Käs, "elasticity is the one which varies most dramatically between normal and cancerous cells." This makes stretching the most sensitive method known for identifying cancer. Just 50 tumour cells are needed in a sample for the optical stretcher to diagnose cancer, contrasting with traditional methods which need 10,000 to 100,000 cells. With such small samples, diagnoses can be made even before solid tumours develop, or where a traditional biopsy is problematic.

More importantly, the optical stretcher can yield crucial information on the spread of cancer. The softer the cancer cells, the more likely they are to travel through the body and produce secondary tumours (known as metastases). Traditionally, doctors have had to check nearby lymph nodes for cancer cells. However, the optical stretcher can determine, just by measuring cells from the primary tumour, whether or not the cancer will spread. This is the first time that anyone has been able to diagnose metastasis without locating the secondary tumours.

Secondary tumours can be difficult to find, and women with breast cancer often undergo precautionary mastectomy or whole-body chemotherapy. The optical stretcher will allow many women to avoid the emotional and physical side-effects of such unnecessary treatment.

The optical stretcher can test as many as 3,600 cells per minute, so is already fast enough to be useful in clinical diagnosis of cancer. Professor Käs believes that this high speed and the equipment’s low cost could even herald a shift towards cancer prevention. Dentists, for example, could swab their patients for mouth cancer cells even before a solid tumour develops. Pre-clinical trials are already underway in Germany, and Professor Käs is keen for an industrial partner to see his prototype machine through to full clinical testing.

Professor Josef Käs is Director of the Institute for Soft Matter Physics at the University of Leipzig, Germany.

David Reid | EurekAlert!
Further information:
http://www.physics2005.iop.org
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>