Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes influence knowledge of the universe

11.03.2005


Black holes have a reputation for voraciously eating everything in their immediate neighborhood, but these large gravity wells also affect electromagnetic radiation and may hinder our ability to ever locate the center of the universe, according to an international research team.



"Any attempt to discover what was happening a long time ago at the beginning of our universe must take into account what gravitationally assisted negative refraction does to the radiation being viewed," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State.

Electromagnetic radiation is affected by the material through which it travels. A material with a negative index of refraction transmits light or other wave energy differently than one with a positive index of refraction. Natural materials have positive index of refraction. When an energy beam – light, radar, microwaves – passes through water or glass or some other natural material, the material displaces the beam in the same direction. The amount of displacement depends upon how different the material is from air or vacuum. The displacement, due to a material with negative index of refraction, is in the opposite direction.


Previously, Lakhtakia and Tom G. Mackay, lecturer in mathematics, University of Edinburgh, used Albert Einstein’s Special Theory of Relativity to examine refraction by moving materials. They calculated that negative refraction can be concluded to have occurred by an observer moving at a very high relative velocity in certain directions.

Later they showed that no material is needed for negative refraction in outer space. Instead, when a beam passes through the gravitational field of a massive object such as a rotating black hole, negative refraction is theoretically possible.

When it comes to the influence of gravity caused by rotating black holes or other massive objects, it really depends on where one stands. A local observer can only see a very small piece of the universal picture of how large gravitational forces influence electromagnetic radiation. To the local observer, gravity is uniform and does not cause negative refraction.

However, Lakhtakia and Mackay, assisted by Sandi Setiawan, a postdoctoral researcher at the University of Edinburgh, decided to look at a global observer -- one who stands in space-time as described by Einstein in his General Theory of Relativity. A global observer sees a region around rotating black holes, called the ergosphere, as possibly bending electromagnetic radiation according to a negative refractive index.

These new derivations, reported in the March 7 issue of Physics Letters A, indicate that not only do the effects of the minute stuff of the universe have to be considered when mapping the universe, but the existence of large gravity wells must also be considered.

"When we are tracking light, we must take into account gravitational forces," says Lakhtakia. "Although the effect is only significant very close to rotating black holes."

The three researchers have extended their theory of negative refraction to even more general scenarios, in a paper published today (March 8) in the New Journal of Physics, an electronic journal. As we reach out in extrasolar space, for example via Pioneer 10, scientists are getting more interested in the actual existences of such scenarios.

Normal light bending by a gravity source such as our sun is known as gravitational lensing. It has been suggested since Einstein’s time and was experimentally shown by a British team of scientists in 1919. This gravitational lensing sometimes causes multiple images to be seen. The effect is taken into account in global positioning systems. However, this light bending is positively refracted.

But, when we search for the origin of our universe, multiple black holes and other massive objects can make the light beams bend in unexpected and unpredictable ways.

"We should not be disappointed if we cannot discover the origin of the universe," says Lakhtakia. "The gravitational effect probably makes it so that we do not really know where we are looking."

Nevertheless, Lakhtakia and his collaborators are optimistic that scientists will eventually overcome many of the obstacles put forward by negative refraction in outer space.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>