Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes influence knowledge of the universe

11.03.2005


Black holes have a reputation for voraciously eating everything in their immediate neighborhood, but these large gravity wells also affect electromagnetic radiation and may hinder our ability to ever locate the center of the universe, according to an international research team.



"Any attempt to discover what was happening a long time ago at the beginning of our universe must take into account what gravitationally assisted negative refraction does to the radiation being viewed," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State.

Electromagnetic radiation is affected by the material through which it travels. A material with a negative index of refraction transmits light or other wave energy differently than one with a positive index of refraction. Natural materials have positive index of refraction. When an energy beam – light, radar, microwaves – passes through water or glass or some other natural material, the material displaces the beam in the same direction. The amount of displacement depends upon how different the material is from air or vacuum. The displacement, due to a material with negative index of refraction, is in the opposite direction.


Previously, Lakhtakia and Tom G. Mackay, lecturer in mathematics, University of Edinburgh, used Albert Einstein’s Special Theory of Relativity to examine refraction by moving materials. They calculated that negative refraction can be concluded to have occurred by an observer moving at a very high relative velocity in certain directions.

Later they showed that no material is needed for negative refraction in outer space. Instead, when a beam passes through the gravitational field of a massive object such as a rotating black hole, negative refraction is theoretically possible.

When it comes to the influence of gravity caused by rotating black holes or other massive objects, it really depends on where one stands. A local observer can only see a very small piece of the universal picture of how large gravitational forces influence electromagnetic radiation. To the local observer, gravity is uniform and does not cause negative refraction.

However, Lakhtakia and Mackay, assisted by Sandi Setiawan, a postdoctoral researcher at the University of Edinburgh, decided to look at a global observer -- one who stands in space-time as described by Einstein in his General Theory of Relativity. A global observer sees a region around rotating black holes, called the ergosphere, as possibly bending electromagnetic radiation according to a negative refractive index.

These new derivations, reported in the March 7 issue of Physics Letters A, indicate that not only do the effects of the minute stuff of the universe have to be considered when mapping the universe, but the existence of large gravity wells must also be considered.

"When we are tracking light, we must take into account gravitational forces," says Lakhtakia. "Although the effect is only significant very close to rotating black holes."

The three researchers have extended their theory of negative refraction to even more general scenarios, in a paper published today (March 8) in the New Journal of Physics, an electronic journal. As we reach out in extrasolar space, for example via Pioneer 10, scientists are getting more interested in the actual existences of such scenarios.

Normal light bending by a gravity source such as our sun is known as gravitational lensing. It has been suggested since Einstein’s time and was experimentally shown by a British team of scientists in 1919. This gravitational lensing sometimes causes multiple images to be seen. The effect is taken into account in global positioning systems. However, this light bending is positively refracted.

But, when we search for the origin of our universe, multiple black holes and other massive objects can make the light beams bend in unexpected and unpredictable ways.

"We should not be disappointed if we cannot discover the origin of the universe," says Lakhtakia. "The gravitational effect probably makes it so that we do not really know where we are looking."

Nevertheless, Lakhtakia and his collaborators are optimistic that scientists will eventually overcome many of the obstacles put forward by negative refraction in outer space.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>