Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find new role for the swastika


Just a month after a call for a European-wide ban of the swastika, scientists have found that the symbol has new applications in optical communications and could have a role in quantum cryptography.

Dr Darren Bagnall from the School of Electronics and Computer Science (ECS) at the University of Southampton has found that he can arrange tens of thousands of gold swastikas on a square millimetre to form new optical metamaterials that act to artificially change the polarisation of light, effectively “twisting” light in accordance with the rotation of the swastikas. By changing the degree of twist in a predictable way the chiral metamaterials can provide an alternative way to code information that is being transmitted using light.

According to Dr Bagnall, it is the special arrangement and squareness of the swastika which makes it the ideal geometry for their experiments. He comments: "The swastika has a number of special features, it is entirely made up of vertical and horizontal straight lines and it is square but can still provide the feeling of left-handed or right-handed rotation known as chirality. It is this chirality which causes our swastikas to twist light."

Dr Bagnall and his team are continuing to experiment with a wide range of other chiral geometries such as, spirals, triskella and some fractals and are very excited about the potential for use of these chiral metamaterials in technology.

Dr Bagnall comments: ‘While we are still at an early stage in our experiments, we can already anticipate applications in optoelectronics, laser physics and optical communications. This is especially true, as technologists are increasingly using polarisation state as a means of carrying information in applications such as quantum cryptography.’

Joyce Lewis | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>