Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn’s aurora defy scientists’ expectations

17.02.2005


Secrets of Saturn’s polar light show unveiled by BU-led team of astronomers



Aurora on Saturn behave in ways different from how scientists have thought possible for the last 25 years, according to new research by a team of astronomers led by John Clarke, a professor in BU’s Department of Astronomy and in the department’s Center for Space Physics. The team’s findings have overturned theories about how Saturn’s magnetosphere behaves and how its aurora are generated. Their results will be published in the February 17 issue of Nature.

In an unusual coordination of two spacecraft, the team was able to gather what proved to be startling data on Saturn’s aurora. By choreographing the instruments aboard the Saturn-bound Cassini spacecraft and the Hubble Space Telescope circling Earth to look at Saturn’s southern polar region, Clarke and his team found that the planet’s aurora, long thought of as a cross between those of Earth and Jupiter, are fundamentally unlike those observed on either of the other two planets. The lights that occasionally paint the sky over Saturn may, in fact, be a phenomenon unique within our solar system.


In Clarke’s experiment, Hubble snapped ultraviolet pictures of Saturn’s aurora over several weeks and Cassini recorded radio emissions from the same regions while measuring the solar wind. Those measurements sets were combined to yield the most accurate glimpse yet of Saturn’s aurora.

The observations showed that Saturn’s aurora differ in character from day to day, as they do on Earth, moving around on some days and stationary on others. But compared to Earth’s auroral displays, which last only about 10 minutes, Saturn’s aurora can last for days.

The observations also indicated, surprisingly, that the sun’s magnetic field and solar wind may play a much larger role in Saturn’s aurora than previously suspected. Hubble images show that some displays remain stationary as the planet rotates beneath, as happens on Earth, but also show that, as on Jupiter, the aurora sometime move along with Saturn as it spins on its axis. This difference suggests that Saturn’s aurora are driven in an unexpected manner by the sun’s magnetic field and the solar wind and that the planet’s aurora possibly have different physical states at different times.

Seen from space, an aurora appears as a ring of energy circling a planet’s polar region. Auroral displays are spurred when charged particles in space interact with a planet’s magnetosphere and stream into the upper atmosphere. Collisions with atoms and molecules produce flashes of radiant energy in the form of visible, ultraviolet, and infrared light.

Scientists had long believed Saturn’s aurora possess properties akin to auroras on Earth and Jupiter--like Earth’s, they were thought to be influenced by the solar wind; and like Jupiter’s, they were assumed to be influenced by a ring of ions and charged particles encircling the planet.

But, as the team observed, although Saturn’s aurora do share characteristics with the other planets, they are fundamentally unlike the auroral displays on either Earth or Jupiter. When Saturn’s aurora become brighter (and thus more powerful), the ring of energy encircling the pole shrinks in diameter. By contrast, when Earth’s aurora become brighter, the polar region fills with light for several minutes, then dims, and the ring of light expands. Jupiter’s aurora, in comparison, are only weakly influenced by the solar wind, becoming brighter about once a month.

Saturn’s auroral displays also become brighter on the sector of the planet where night turns to day as the storms increase in intensity, unlike either of the other two planets. At certain times, Saturn’s auroral ring was more like a spiral, its ends not connected as the energy storm circled the pole.

Now that Cassini has entered orbit around Saturn, Clarke and his team will be able to take a more direct look at the how the planet’s aurora are generated. According to Clarke, the team’s next effort will be to study in greater detail how Saturn’s auroral emissions are influenced by the planet’s magnetic field.

The Cassini/Huygens mission was launched in 1997 and is jointly operated by the European Space Agency and NASA’s Jet Propulsion Laboratory in Pasadena, California. Cassini arrived in orbit around Saturn in July 2004 and will spend four years exploring the sixth planet, its moons and mysterious rings. NASA’s Hubble Space Telescope is a cooperative program with the European Space Agency and is operated by the Space Telescope Science Institute on the Johns Hopkins University Homewood Campus in Baltimore, Maryland. Hubble has spent the last 14 years orbiting Earth snapping pictures of the cosmos.

Faculty research in BU’s Department of Astronomy is coordinated through its Institute for Astrophysical Research and its Center for Space Physics. Boston University, with an enrollment of more than 29,000 in its 17 schools and colleges, is the fourth-largest independent university in the United States.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu
http://saturn.jpl.nasa.gov
http://hubblesite.org/news/2005/06

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>