Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Announce Smallest Extra-Solar Planet Yet Discovered and Find Outer Limits of the Pulsar Planetary System

08.02.2005


Penn State’s Alex Wolszczan, the discoverer in 1992 of the first planets ever found outside our solar system, now has discovered with Caltech’s Maciej Konacki the smallest planet yet detected,in that same far-away planetary system. Immersed in an extended cloud of ionized gas, the new planet orbits a rapidly spinning neutron star called a pulsar. The discovery, to be announced during a press conference at a meeting concerning planetary formation and detection in Aspen, Colorado, on 7 February, yields an astonishingly complete description of the pulsar planetary system and confirms that it is remarkably like a half-size version of our own solar system — even though the star these planets orbit is quite different from our Sun.



"Despite the extreme conditions that must have existed at the time these planets were forming, Nature has managed to create a planetary system that looks like a scaled-down copy of our own inner solar system," Wolszczan reports. The star at the center of this system is a pulsar named PSR B1257+12 — the extremely dense and compact neutron star left over from a massive star that died in a violent explosion 1,500 light years away in the constellation Virgo.

Wolszczan and his colleagues earlier had discovered three terrestrial planets around the pulsar, with their orbits in an almost exact proportion to the spacings between Mercury, Venus, and Earth. The newly discovered fourth planet has an orbit approximately six times larger than that of the third planet in the system, which Konacki says is amazingly close to the average distance from our Sun to our solar system’s asteroid belt, located between the orbits of Mars and Jupiter.


"Because our observations practically rule out a possible presence of an even more distant, massive planet or planets around the pulsar, it is quite possible that the tiny fourth planet is the largest member of a cloud of interplanetary debris at the outer edge of the pulsar’s planetary system, a remnant of the original protoplanetary disk that created the three inner planets," Wolszczan explains. The small planet, about one-fifth of the mass of Pluto, may occupy the same outer-boundary position in its planetary system as Pluto does in our solar system. "Surprisingly, the planetary system around this pulsar resembles our own solar system more than any extrasolar planetary system discovered around a Sun-like star," Konacki says.

Fifteen years ago, before Wolszczan’s discovery of the first extrasolar planets, astronomers did not seriously entertain the idea that planets could survive around pulsars because they would have been blasted with the unimaginable force of the radiation and remnants of their exploding parent star. Since then, Wolszczan, Konacki, and colleagues have gradually been unraveling the mysteries of this system of pulsar planets, using the Arecibo radio telescope in Puerto Rico to collect and analyze pulsar-timing data. "We feel now, with this discovery, that the basic inventory of this planetary system has been completed," Wolszczan says.

These discoveries have been possible because pulsars, especially those with the fastest spin, behave like very accurate clocks. "The stability of the repetition rate of the pulsar pulses compares favorably with the precision of the best atomic clocks constructed by humans," Konacki explains. Measurements of the pulse arrival times, called pulsar timing, give astronomers an extremely precise method for studying the physics of pulsars and for detecting the phenomena that occur in a pulsar’s environment.

"A pulsar wobble due to orbiting planets manifests itself by variations in the pulse arrival times, just like a stellar wobble is detectable with the well-known Doppler effect so successfully used by optical astronomers to identify planets around nearby stars by the shifts of their spectral lines," Wolszczan explains. "An important advantage of the fantastic stability of the pulsar clocks, which achieve precisions better than one millionth of a second, is that this method allows us to detect planets with masses all the way down to those of large asteroids."

The very existence of the pulsar planets may represent convincing evidence that Earth-mass planets form just as easily as do the gas giants that are known to exist around more than 5 percent of the nearby Sun-like stars. However, Wolszczan says, "the message carried by the pulsar planets may equally well be that the formation of Earth-like planets requires special conditions, making such planets a rarity. For example, there is growing evidence that a nearby supernova explosion may have played an important role in our solar system’s formation." Future space observatories, including the Kepler and the Space Interferometry Missions, and the Terrestrial Planet Finder, will play a decisive role in making a distinction between these fundamental alternatives.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>