Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurements at CERN help to re-evaluate the element of life

14.01.2005


Results from experiments at CERN and the Jyväskylä Accelerator Laboratory in Finland, reported in Nature today, cast new light on the primary reaction that creates carbon in stars. All the carbon in the Universe, including that needed for carbon-based life forms such as ourselves, has been made in the hearts of stars through what is known as the “triple alpha reaction”. The new findings modify the rate at which the reaction occurs and have broad implications for astrophysics, from the formation of the first stars to the creation of the heaviest elements in supernovae.



"The connection between the subatomic world and the cosmos is fascinating. The example of carbon is an old problem with contributions from many heroes in the field. It is a pleasure to be able to answer some of the questions they have left for us. It is the technological development in the intervening years, for example at ISOLDE, that has made this possible," says from Hans Fynbo of the University of Aarhus, lead author of the paper.

The big bang created mainly only hydrogen (mass 1) and helium (mass 4), because there are no long lived atomic nuclei with mass 5 and 8 to make the bridge to heavier elements such as carbon (mass 12). But in the hearts of stars the formation of carbon is possible through the triple-alpha reaction, where three helium nuclei (alpha particles) fuse to make to make a nucleus of carbon-12.


Rather than recreate the scorching conditions inside stars, the team from CERN and eight other European universities and institutes watched the reaction unfold in reverse, as nuclei of carbon-12 broke into three alpha particles. To do this, they created boron-12 and nitrogen-12, which are short-lived isotopes of the elements that flank carbon in the Periodic Table. The boron-12 was produced at CERN’s ISOLDE facility, while the nitrogen-12 was created at the IGISOL facility at the Jyväskylä Accelerator Laboratory at the University of Jyväskylä. These unstable nuclei soon transformed into carbon-12, through beta decay, in which a proton changes into a neutron or vice versa; the carbon-12 then broke into three alpha particles.

The ISOL method – isotope separation on line - originally pioneered and developed mainly at CERN played an important role in these experiments. “While ISOLDE at CERN could make the boron-12, IGISOL in Jyväskylä was needed to produce the nitrogen-12. This facility in Finland was specifically developed to complement ISOLDE’s performance through its ability to produce very short-lived radioisotopes of chemically reactive elements such as nitrogen," said Juha Äysto, head of the group responsible for the experiment at the University of Jyväskylä.

By measuring precisely the timing and energies of alpha particles shooting from the samples, the researchers were able to infer the energy states of the carbon nuclei just before decay. With this information in hand, they were able to determine the rate for the triple alpha process over a wide range of temperatures, from 0.01 – 10 billion K.

For the conditions in most stars, the researchers’ calculated rates for the triple alpha process agree with previous calculations. But their findings suggest the triple alpha rate at the relatively low temperatures of the Universe’s first stars (around 0.05 billion K), which began without carbon, was much faster. This in turn implies that the amount of carbon that could catalyze hydrogen burning in the first stars was produced twice as fast as previously thought.

At high temperatures, above 1 billion K, the new results indicate that the triple alpha process would work significantly slower than previous estimates, modifying the process of element production - nucleosynthesis – in supernovae. These explosions of old massive stars are a major source of the heaviest elements, those more massive than iron, through interactions in the surrounding shock wave. The new results suggest a reduction in the amount of nickel-56 produced with subsequent effects for heavier elements.

This work was carried by a team from CERN and eight other European universities and institutes.

James Gillies | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>