Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers find gravity’s signature in galaxy distribution


In the largest galaxy survey ever, the Sloan Digital Sky Survey (SDSS) confirmed the role of gravity in growing structures in the universe, using the result to precisely measure the geometry of the universe.

The SDSS researchers from the University of Arizona, New York University, the University of Portsmouth (UK), the University of Pittsburgh and the Massachusetts Institute of Technology, detected ripples in the galaxy distribution made by sound waves generated soon after the Big Bang. "These sound waves left their imprint in the Cosmic Microwave Background, remnant radiation from the Big Bang seen when the universe was 400,000 years old," lead investigator Daniel Eisenstein of the University of Arizona said. "We are now seeing the corresponding cosmic ripples in the SDSS galaxy maps. Seeing the same ripples in the early universe and the relatively nearby galaxies is smoking-gun evidence that the distribution of galaxies today grew via gravity."

Eisenstein made the announcement today during a press conference at the winter meeting of the American Astronomical Society in San Diego. The paper, "Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies" was submitted for publication to the Astrophysical Journal on December 31, 2004. Ripples as yardsticks The early Universe was smooth and homogenous, quite a contrast from the clumpy array of galaxies and clusters of galaxies observed today. One of the major goals of cosmology is to understand how these structures grew out of the initially smooth universe.

The galaxies we see today consist of ordinary matter, made up of the atoms of our familiar world. However, astronomers have long known that there is roughly five times more ’dark matter’ than ordinary or ’baryonic’ matter. Understanding how gravity causes the clumps that will become galaxies and clusters of galaxies to grow as the universe expands requires studying the interaction between ordinary and dark matter. "In the early Universe, the interaction between gravity and pressure caused a region of space with more ordinary matter than average to oscillate, sending out waves very much like the ripples in a pond when you throw in a peeble," explains SDSS scientist and co-author Bob Nichol, an astrophysicist at the Institute of Cosmology & Gravitation at the University of Portsmouth (UK), the most recent institution to join the SDSS collaboration. "These ripples in the matter grew for a million years until the Universe cooled enough to freeze them in place. What we now see in the SDSS galaxy data is the imprint of these ripples billions of years later."

Or gravity’s signature could be likened to a ringing bell’s resonance in time and space, adds Idit Zehavi of the University of Arizona. "This last ring gets forever quieter and deeper in tone as the Universe expands. It is now so faint as to be detectable only by the most sensitive surveys," Zehavi explains. "The SDSS has measured the tone of this last ring very accurately. "Comparing the measured value with that predicted gives a yardstick that enables us to determine the rate at which the universe expands, which in turn depends on the amount of both dark matter and dark energy," Zehavi explains. Dark energy is the still mysterious force driving the acceleration and expansion of the Universe today.

Waves separated by 500 million light years

The sound waves propagated for the first million years of the Universe’s history. Their existence was first predicted in 1970 and they were first seen in 1999 in fluctuations in the remnant light from the hot glow of the Big Bang known as the Cosmic Microwave Background. It had long been suggested that these sound waves should also be present in the distribution of galaxies, but the signal was predicted to be subtle and difficult to discern.

To find the signal, the SDSS team mapped more than 46,000 very luminous red galaxies over a volume of space roughly five billion light years in diameter. They found a slight excess of galaxies with separations of 500 million light years, exactly the predicted signature of the sound waves. "This is just the scale predicted for these ripples", explained David Hogg of New York University, a member of the team. "The precise determination of the distance between ripples allows us to set the scale of the expansion of the universe, which in turn allows us to constrain the properties of both dark matter and dark energy."

SDSS team member Kazuhiro Yahata of the University of Tokyo led a complementary analysis of quasar clustering and credits the huge volume of SDSS data that allows such findings. While Yahata’s analysis did not directly detect the 500 million light year yardstick in the quasar distribution, its results are fully consistent with the presence of sound waves.

A similar analysis on a different dataset by the Two Degree Field Galaxy Redshift Survey has also detected the sound waves. "It is impressive verification of the standard cosmological model that two groups with independent data have both made significant detections of the baryon induced features in large-scale galaxy clustering," said Shaun Cole of the University of Durham (UK), lead author of the Two Degree Field study.

"The amazing thing about all these results is that they are in perfect accord with the predictions of our standard cosmological model, including both dark matter and dark energy," says Eisenstein. "So while it all fits together, it still leaves us ’in the dark’ about the nature of these two mysterious components which dominate the energy of the universe."

Daniel Eisentein | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>