Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice study could stop people slip-sliding away

10.12.2004


The researchers have developed a Tribometer to perform the friction experiments. They then use the Low Temperature Scanning Electron Microscope to study the ‘wear surfaces’ created.


Going out and about in freezing conditions could become safer thanks to fundamental research at the University of Edinburgh into how we slip on ice.

Using funding from the Engineering and Physical Sciences Research Council (EPSRC) researchers at Edinburgh have built a device, known as a Tribometer, to measure the friction generated as different materials, such as rubber or metal, slip across a sample of ice. The Tribometer is designed to investigate how factors such as temperature, object weight, material composition and velocity affect friction.

The team then examines the ice sample using a state-of-the-art Low Temperature Scanning Electron Microscope (LTSEM). This detail of observation has never been done before and allows the team to investigate what is happening to the ice at scales from several millimetres to as small as nanometres.



Obvious products that could benefit from the research include car tyres and shoes. The project has already attracted the involvement of both Ford and Jaguar. Sports engineers could use the data to design better skis and ice skates, except in this case they would be looking to engineer surfaces that do slip more easily. In addition, the Tribometer could also be used to study the efficiency of ‘gritting’ agents.

Dr Jane Blackford, who heads the team, and was also a consultant to the UK Olympic Curling Team who won a gold medal in the 2002 Winter Olympics in Salt Lake City, says, “Although people have studied ice friction before, there are still many open questions. We are aiming to fill in those gaps and understand why friction varies under different conditions.”

The team has already found that the temperature of the ice plays a large role in how it responds when an object begins to slip.

Dr Blackford says, “I hope the data from this project will provide a bedrock of solid information that manufacturers can use to design more effective, slip-resistant surfaces, tailored to the specific ice conditions in which they will be used.”

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>