Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue method to help engineers design systems for Mars, moon missions

07.12.2004


Purdue University researchers, in the culmination of a four-year NASA-funded project, have created a method that will enable engineers to design more efficient systems for heating, cooling and other applications in spacecraft for missions to Mars and the moon.



The new method uses a model that was recently shown to be highly accurate in experiments onboard a NASA KC-135 aircraft that creates reduced gravity conditions such as those in earth orbit, on the moon and Mars. The aircraft flies in steep maneuvers, causing brief periods of microgravity in which to test theories for the design of space hardware, said Issam Mudawar, a Purdue professor of mechanical engineering, director of Purdue’s Boiling and Two-Phase Flow Laboratory and the university’s International Electronic Cooling Alliance.

"Our model can predict how these systems behave in reduced gravity based on operating conditions, how much fluid is flowing in a tube, how fast it is flowing, what the tube diameter and tube length are, and so on," Mudawar said. "What’s neat about the flight experiments is that not only did we get data about the microgravity of space travel, but we also simulated the reduced gravity of the moon and Mars."


Lunar gravity is one-sixth that of Earth’s, and Martian gravity is three-eighths as strong.

Using the same principle behind ordinary air conditioners and refrigerators, scientists want to use so-called "two-phase systems" for future spacecraft and space stations on the moon and Mars. The systems will work by using a closed loop in which liquid comes to a boil as it absorbs heat, turns into a vapor and is then returned by pumps so that it condenses back into a liquid and, in the process, cools down to begin the cycle over again.

"Boiling the liquid makes these systems at least 10 times more effective at transferring heat than systems that merely heat liquid, like the cooling system in your car, in which water absorbs heat from the engine and then circulates through a radiator to release the heat," Mudawar said. "The problem is that little has been known about the behavior of boiling and condensing liquids in space. "Our work with NASA has led to a fundamental understanding of this two-phase fluid behavior in the microgravity of space and a method to provide guidelines for the design of space hardware."

Findings were presented in Cleveland in June during the Workshop on Strategic Research to Enable NASA’s Exploration Missions. The study was conducted by Mudawar; Hui Zhang, a Purdue doctoral student in mechanical engineering; and Mohammad M. Hasan, a research engineer at the NASA Glenn Research Center in Cleveland.

The Purdue researchers first created a model in experiments on earth that simulated low gravity. Then, flight experiments on the NASA aircraft proved the model to be highly accurate, Mudawar said.

Engineers designed the flight experiment so that fluid flowed through a transparent plastic window. The researchers then took high-speed photographs and video of the flowing fluid during the flights, enabling the engineers to study its behavior in minute detail.

Zhang operated the experiment on the NASA KC-135 aircraft.

Data recorded during the experiments show how a given system would function in space, on the moon and on Mars.

Because boiling, vaporizing and condensing a fluid is far more effective at dissipating heat than just using liquid, such systems can be significantly more compact and lightweight, which is ideal for space travel. "Weight is at a premium for any space mission, and this model will help engineers create smaller and lighter systems," NASA researcher Hasan said.

The transfer of heat is critical for cooling and heating systems, as well as the operation of power plants that use nuclear fission reactions. NASA researchers are exploring the possible use of nuclear fission reactors – the type of nuclear power used on earth – for future space applications.

President George W. Bush has launched an initiative establishing human missions to the moon and Mars as priorities, which means better life-support and power-generation systems will be needed.

The next step in the Purdue research will be testing the model with various fluids to broaden the tool’s range of applications.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>