Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sound Filters Light


Russian researchers have developed a small, smart and tolerant to vibrations spectrometer, which is equally reliable in the outer space and in oceanic depths. The development was performed with financial support from the Russian Foundation for Basic Research (RFBR) and the Foundation for Assistance to Small Innovative Enterprises (FASIE). The unique device is based on a completely new principle: the light goes through an acoustooptical filter in the device.

Specialists of the Scientific & Technical Center for Unique Instrument-Making produce unique devices with enviable regularity. The new spectrometer developed with support the RFBR and FASIE by a group under the direction of Vladislav Pustovoit, academy member, is also unique. Such spectrometer would not have to spend precious seconds to switch over from, for example, one wave-length to another – this is inevitable evil of similar classical devices for measuring light intensity at different wave-lengths. The device is tolerant to shaking and takes up little space, therefore it can be taken on board the spaceship, let alone a small search aircraft. The device can be even carried in a pocket.

Such a device due to its compactness and high sensitivity can be applied in multiple areas: from industrial processes control through biomedical applications. For example, the device may be useful for ecologists. It allows to determine instantly what unscrupulous enterprises contaminate water and air with. The device can do that in complicated conditions – at a distance, upon quick reciprocal movement of the carrier and the object. Thus, flying over the sea, the pollution source may be quickly found by reflected light. The device would help to find the pipe from which poisonous drainage gets to the sea and to determine what contaminating agents are pored into the sea from that pipe. This can be done without water sampling and other routine analysis.

The device action is based on a new principle – phenomenon of light diffraction on acoustic waves in crystals. It is known that the crystal refraction index is a constant value for each specific transparent medium. However, if a sound-wave acts upon such transparent medium, then the refraction index will slightly change. If a sound-wave diffuses in the crystal, then occurs the space-periodic structure of the medium refraction index alteration, and then the fireballs incident from the outside will diffract on that structure. Diffraction efficiency depends on the sound-wave amplitude. Consequently, arousing a sound-wave in the crystal can manage its optical properties. The spectrometer action is based on this principle.

The critical part of any spectrometer is the optical filter or gitter, which singles out the light of a certain wave-length from the entire radiation spectrum. In the majority of cases, complicated mechanical tunable devices are used for this purpose. Time is always required to switch the device over from one wave-length to another, retuning may take as long as several dozens of seconds.

The device developed by the Scientific & Technical Center for Unique Instrument-Making (Russain Academy of Sciences) does not suffer from sluggishness. Electric signal instantly makes the piezo-crystal plate vibrate at intended frequency, thus arousing a sound-wave in the crystal, and electric signal’s frequency alteration immediately results in alteration of the acoustic wave period. That also results in a quick alteration of the crystal’s optical properties. Thus, a tunable optical filter (the so-called acousto-optical filter) is in place, it is easy to manage and retune.

One more advantage of the optoacoustic spectrometer is high resolution and the ability to register very weak radiation. As such spectrometer has no mechanically moving parts, it is not afraid of vibrations and shaking. Besides, it is much lighter and smaller than ordinary spectrometers. So, it can really be taken on board the spaceship to investigate, for example, the spectrum of sunlight reflected from the ocean surface or the spectrum of any other radiation.

Sergey Komarov | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>