Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound Filters Light

01.11.2004


Russian researchers have developed a small, smart and tolerant to vibrations spectrometer, which is equally reliable in the outer space and in oceanic depths. The development was performed with financial support from the Russian Foundation for Basic Research (RFBR) and the Foundation for Assistance to Small Innovative Enterprises (FASIE). The unique device is based on a completely new principle: the light goes through an acoustooptical filter in the device.



Specialists of the Scientific & Technical Center for Unique Instrument-Making produce unique devices with enviable regularity. The new spectrometer developed with support the RFBR and FASIE by a group under the direction of Vladislav Pustovoit, academy member, is also unique. Such spectrometer would not have to spend precious seconds to switch over from, for example, one wave-length to another – this is inevitable evil of similar classical devices for measuring light intensity at different wave-lengths. The device is tolerant to shaking and takes up little space, therefore it can be taken on board the spaceship, let alone a small search aircraft. The device can be even carried in a pocket.

Such a device due to its compactness and high sensitivity can be applied in multiple areas: from industrial processes control through biomedical applications. For example, the device may be useful for ecologists. It allows to determine instantly what unscrupulous enterprises contaminate water and air with. The device can do that in complicated conditions – at a distance, upon quick reciprocal movement of the carrier and the object. Thus, flying over the sea, the pollution source may be quickly found by reflected light. The device would help to find the pipe from which poisonous drainage gets to the sea and to determine what contaminating agents are pored into the sea from that pipe. This can be done without water sampling and other routine analysis.


The device action is based on a new principle – phenomenon of light diffraction on acoustic waves in crystals. It is known that the crystal refraction index is a constant value for each specific transparent medium. However, if a sound-wave acts upon such transparent medium, then the refraction index will slightly change. If a sound-wave diffuses in the crystal, then occurs the space-periodic structure of the medium refraction index alteration, and then the fireballs incident from the outside will diffract on that structure. Diffraction efficiency depends on the sound-wave amplitude. Consequently, arousing a sound-wave in the crystal can manage its optical properties. The spectrometer action is based on this principle.

The critical part of any spectrometer is the optical filter or gitter, which singles out the light of a certain wave-length from the entire radiation spectrum. In the majority of cases, complicated mechanical tunable devices are used for this purpose. Time is always required to switch the device over from one wave-length to another, retuning may take as long as several dozens of seconds.

The device developed by the Scientific & Technical Center for Unique Instrument-Making (Russain Academy of Sciences) does not suffer from sluggishness. Electric signal instantly makes the piezo-crystal plate vibrate at intended frequency, thus arousing a sound-wave in the crystal, and electric signal’s frequency alteration immediately results in alteration of the acoustic wave period. That also results in a quick alteration of the crystal’s optical properties. Thus, a tunable optical filter (the so-called acousto-optical filter) is in place, it is easy to manage and retune.

One more advantage of the optoacoustic spectrometer is high resolution and the ability to register very weak radiation. As such spectrometer has no mechanically moving parts, it is not afraid of vibrations and shaking. Besides, it is much lighter and smaller than ordinary spectrometers. So, it can really be taken on board the spaceship to investigate, for example, the spectrum of sunlight reflected from the ocean surface or the spectrum of any other radiation.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>