Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound Filters Light

01.11.2004


Russian researchers have developed a small, smart and tolerant to vibrations spectrometer, which is equally reliable in the outer space and in oceanic depths. The development was performed with financial support from the Russian Foundation for Basic Research (RFBR) and the Foundation for Assistance to Small Innovative Enterprises (FASIE). The unique device is based on a completely new principle: the light goes through an acoustooptical filter in the device.



Specialists of the Scientific & Technical Center for Unique Instrument-Making produce unique devices with enviable regularity. The new spectrometer developed with support the RFBR and FASIE by a group under the direction of Vladislav Pustovoit, academy member, is also unique. Such spectrometer would not have to spend precious seconds to switch over from, for example, one wave-length to another – this is inevitable evil of similar classical devices for measuring light intensity at different wave-lengths. The device is tolerant to shaking and takes up little space, therefore it can be taken on board the spaceship, let alone a small search aircraft. The device can be even carried in a pocket.

Such a device due to its compactness and high sensitivity can be applied in multiple areas: from industrial processes control through biomedical applications. For example, the device may be useful for ecologists. It allows to determine instantly what unscrupulous enterprises contaminate water and air with. The device can do that in complicated conditions – at a distance, upon quick reciprocal movement of the carrier and the object. Thus, flying over the sea, the pollution source may be quickly found by reflected light. The device would help to find the pipe from which poisonous drainage gets to the sea and to determine what contaminating agents are pored into the sea from that pipe. This can be done without water sampling and other routine analysis.


The device action is based on a new principle – phenomenon of light diffraction on acoustic waves in crystals. It is known that the crystal refraction index is a constant value for each specific transparent medium. However, if a sound-wave acts upon such transparent medium, then the refraction index will slightly change. If a sound-wave diffuses in the crystal, then occurs the space-periodic structure of the medium refraction index alteration, and then the fireballs incident from the outside will diffract on that structure. Diffraction efficiency depends on the sound-wave amplitude. Consequently, arousing a sound-wave in the crystal can manage its optical properties. The spectrometer action is based on this principle.

The critical part of any spectrometer is the optical filter or gitter, which singles out the light of a certain wave-length from the entire radiation spectrum. In the majority of cases, complicated mechanical tunable devices are used for this purpose. Time is always required to switch the device over from one wave-length to another, retuning may take as long as several dozens of seconds.

The device developed by the Scientific & Technical Center for Unique Instrument-Making (Russain Academy of Sciences) does not suffer from sluggishness. Electric signal instantly makes the piezo-crystal plate vibrate at intended frequency, thus arousing a sound-wave in the crystal, and electric signal’s frequency alteration immediately results in alteration of the acoustic wave period. That also results in a quick alteration of the crystal’s optical properties. Thus, a tunable optical filter (the so-called acousto-optical filter) is in place, it is easy to manage and retune.

One more advantage of the optoacoustic spectrometer is high resolution and the ability to register very weak radiation. As such spectrometer has no mechanically moving parts, it is not afraid of vibrations and shaking. Besides, it is much lighter and smaller than ordinary spectrometers. So, it can really be taken on board the spaceship to investigate, for example, the spectrum of sunlight reflected from the ocean surface or the spectrum of any other radiation.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>