Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tame electron beams, bringing ’table top’ particle accelerators a step closer

30.09.2004


Scientists from the UK and the USA have successfully demonstrated a new technique that could help to shrink the size and cost of future particle accelerators for fundamental physics experiments and applications in materials and biomedicine.



Using the huge electric fields in laser-produced plasmas, they have accelerated beams of electrons close to the speed of light, in an important step towards the development of a working laser electron accelerator that could sit on a table top.

The researchers from Imperial College London, CCLRC Rutherford Appleton Laboratory (RAL), University of Strathclyde, UK, and University of California Los Angeles, USA, report their findings in Nature today (30 September). "It’s the first time that a real electron beam has been generated by these methods," said Professor Karl Krushelnick of Imperial College London, leader of the research group.


The next generation of particle accelerators using existing technology will be many kilometres in size and likely cost billions of pounds, but laser electron accelerators may offer a cheaper and smaller alternative says Professor Krushelnick. "Ultimately our work could lead to the development of an accelerator that scientists could put in a university basement," he says. "Such a small-scale local facility would give many scientists the ability to run experiments that currently they can only do at national or international centres." "Who knows, one day you might even do high energy physics in a university laboratory. It would be strange but it’s not impossible to imagine."

Electrons in accelerators travel so close to the speed of light that their ’speed’ is referred to in terms of energy. Electrons clocked closest to the speed of light are said to be at ’relativistic energies’. Using a high power, short-pulse laser system the researchers demonstrated they could accelerate beams of electrons directly from the plasma to energies up to 100MeV, over a distance of only one mm.

Previous measurements of electrons accelerated by lasers had shown that they had a large spread in energy, making them useless for applications requiring any degree of precision. "It is imperative you know the energy of the electron beam for much use to be made of it," says Stuart Mangles, Imperial College post-graduate student and lead author on the Nature paper. "Now we’ve shown we can make good quality electron beams with a narrow energy spread. They have incredibly short pulse duration and also have very low emittance, which means that they are very focusable."

Using RAL’s short-pulse high power laser system, ASTRA, the team showed that for particular plasma densities and laser focusing conditions, the plasma waves produced during the interaction could grow so large that they ’break’ and inject short bunches of electrons into the adjacent wave. Just like a surfer picking up energy from an ocean wave, the electrons in the laser pick up energy from waves in the plasma. "It was serendipity," said Professor Krushelnick. "We found the laser pulses actually self-inject electrons at the right phase."

The latest developments are propelled by advances in laser technology. The power in the ASTRA 20 terawatt laser is many times the power generation capacity of the UK but the pulse length is only a tiny fraction of a second, about 40 femtoseconds. The ratio of a femtosecond to a minute is about the same as the ratio of a second to the age of the universe, added Professor Krushelnick.

The Imperial group, which has been working in this area for over 15 years, conceived and carried out the experiments at the Council for the Central Laboratory of the Research Councils’ Rutherford Appleton Laboratory near Oxford. This work was supported by EPSRC and Research Councils UK under the Basic Technology Programme.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>