Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron physics instrument may unlock mysteries of universe

17.09.2004


Fundamental questions that particle physicists have pondered for decades might be answered when a $9.2 million neutron physics beam line is built at the Department of Energy’s Spallation Neutron Source on Chestnut Ridge.



At the core of physicists’ excitement is the fact that the SNS will produce up to 100 times more neutrons than are produced by any comparable source in the world. Tapping in to those neutrons will be the Fundamental Neutron Physics beam line, which will help physicists exploit neutrons to learn more about the Big Bang, left-right symmetry of the universe and the amount of energy produced in the sun. Recently, the beam line project passed a milestone with the approval of the performance baseline -- known as Critical Decision 2.

"This is, in a sense, the formal definition of the scope of the project and represents a detailed agreement between DOE and Oak Ridge National Laboratory as to what will be built, when it will be built, how much it will cost and how the project will be managed," said Geoff Greene, a professor at the University of Tennessee and researcher in the Physics Division at ORNL.


Greene noted that much work lies ahead, but the benefits of having extremely intense beams of neutrons at their disposal should be phenomenal. "To scientists studying materials -- the main focus of SNS research -- the neutron is merely a tool that helps them probe the structure of condensed matter," Greene said. "But to particle physicists, the neutron holds the key to understanding many of the mysteries of the universe."

The fact physicists will have many more neutrons available to them greatly increases the accuracy of their experiments, one of which is aimed at pinpointing the lifetime of a free neutron. Obtaining a precise answer could help physicists better understand the origin of matter and may help explain the "left-handedness" of the universe at the subatomic level.

A system is said to be "handed," Greene said, when its mirror image differs from its appearance looking at it directly. For example, a sphere is not handed, but a corkscrew is because its image in a mirror is reversed. The sphere viewed in a mirror looks the same.

Greene and others have long been puzzled by the fact that, in an otherwise symmetric universe, radioactivity viewed at the elementary particle level is left-handed. In the world of physics, the phenomenon is known as parity violation. "So, is the left-handedness of the universe just an accident, a ‘broken symmetry,’ or is it a manifestation of a fundamental characteristic of the cosmos?" Greene asked.

Indeed, to have an instrument like the Fundamental Neutron Physics beam line has been the dream of physicists for years, said Greene, who noted that 65 participants from 20 institutions participated in an organizational meeting of the development team at ORNL in 2001.

Greene led the proposal team, which was made up of Vince Cianciolo of ORNL, David Bowman and Martin Cooper of Los Alamos National Laboratory, John Doyle of Harvard University, Christopher Gould of North Carolina State University, Paul Huffman of the National Institute of Standards and Technology and Mike Snow of Indiana University.

The beam line will consist of neutron guides, choppers, secondary shutters and shielding, along with the necessary utilities and safety and radiation protection equipment. The facility will be capable of accommodating a wide variety of experiments, each of which typically takes years to develop and occupies the beam line continuously for many months.

The Fundamental Neutron Physics beam line will be operated as a user facility with all beam time allocated on the basis of independent peer reviews, Greene said. The beam line should be commissioned in mid-2008, about two years after the $1.4 billion SNS comes on line.

Funding for the project is being provided by DOE’s Office of Nuclear Physics within the Office of Science. ORNL, which is managed by UT-Battelle, employs 1,500 scientists and engineers and is DOE’s largest multipurpose science and energy laboratory.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>