Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neutron physics instrument may unlock mysteries of universe


Fundamental questions that particle physicists have pondered for decades might be answered when a $9.2 million neutron physics beam line is built at the Department of Energy’s Spallation Neutron Source on Chestnut Ridge.

At the core of physicists’ excitement is the fact that the SNS will produce up to 100 times more neutrons than are produced by any comparable source in the world. Tapping in to those neutrons will be the Fundamental Neutron Physics beam line, which will help physicists exploit neutrons to learn more about the Big Bang, left-right symmetry of the universe and the amount of energy produced in the sun. Recently, the beam line project passed a milestone with the approval of the performance baseline -- known as Critical Decision 2.

"This is, in a sense, the formal definition of the scope of the project and represents a detailed agreement between DOE and Oak Ridge National Laboratory as to what will be built, when it will be built, how much it will cost and how the project will be managed," said Geoff Greene, a professor at the University of Tennessee and researcher in the Physics Division at ORNL.

Greene noted that much work lies ahead, but the benefits of having extremely intense beams of neutrons at their disposal should be phenomenal. "To scientists studying materials -- the main focus of SNS research -- the neutron is merely a tool that helps them probe the structure of condensed matter," Greene said. "But to particle physicists, the neutron holds the key to understanding many of the mysteries of the universe."

The fact physicists will have many more neutrons available to them greatly increases the accuracy of their experiments, one of which is aimed at pinpointing the lifetime of a free neutron. Obtaining a precise answer could help physicists better understand the origin of matter and may help explain the "left-handedness" of the universe at the subatomic level.

A system is said to be "handed," Greene said, when its mirror image differs from its appearance looking at it directly. For example, a sphere is not handed, but a corkscrew is because its image in a mirror is reversed. The sphere viewed in a mirror looks the same.

Greene and others have long been puzzled by the fact that, in an otherwise symmetric universe, radioactivity viewed at the elementary particle level is left-handed. In the world of physics, the phenomenon is known as parity violation. "So, is the left-handedness of the universe just an accident, a ‘broken symmetry,’ or is it a manifestation of a fundamental characteristic of the cosmos?" Greene asked.

Indeed, to have an instrument like the Fundamental Neutron Physics beam line has been the dream of physicists for years, said Greene, who noted that 65 participants from 20 institutions participated in an organizational meeting of the development team at ORNL in 2001.

Greene led the proposal team, which was made up of Vince Cianciolo of ORNL, David Bowman and Martin Cooper of Los Alamos National Laboratory, John Doyle of Harvard University, Christopher Gould of North Carolina State University, Paul Huffman of the National Institute of Standards and Technology and Mike Snow of Indiana University.

The beam line will consist of neutron guides, choppers, secondary shutters and shielding, along with the necessary utilities and safety and radiation protection equipment. The facility will be capable of accommodating a wide variety of experiments, each of which typically takes years to develop and occupies the beam line continuously for many months.

The Fundamental Neutron Physics beam line will be operated as a user facility with all beam time allocated on the basis of independent peer reviews, Greene said. The beam line should be commissioned in mid-2008, about two years after the $1.4 billion SNS comes on line.

Funding for the project is being provided by DOE’s Office of Nuclear Physics within the Office of Science. ORNL, which is managed by UT-Battelle, employs 1,500 scientists and engineers and is DOE’s largest multipurpose science and energy laboratory.

Ron Walli | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>