Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembly generates more versatile scaffolds for crystal growth

01.09.2004


Self-organizing synthetic molecules originally used for gene therapy may have applications as templates and scaffolds for the production of inorganic materials. Using electrostatic interactions between oppositely charged molecules as the binding force, scientists are learning how to organize these synthetic molecules into more versatile complexes with large and controllable pore sizes.



“By investigating the fundamental design rules for the control of self-assembled supramolecular structures, we can now organize large functional molecules into nanoscopic arrays,” said Gerard Wong, a professor of materials science and engineering and of physics at the University of Illinois. Wong and his colleagues report their latest experimental results in the September issue of the journal Nature Materials.

“We showed that the self-assembly of charged membranes and oppositely charged polymers into structures can be understood in terms of some simple rules,” said Wong, senior author of the paper. “We then applied those rules and demonstrated that we could organize molecules into regular arrays with pore sizes ten times larger than in previous DNA-membrane complexes.”


Early self-assembled DNA-membrane structures consisted of periodic stacks of alternating layers of negatively charged DNA “rods” and positively charged lipid membranes. The pores between the DNA rods could be used to package individual ions, which can in turn be crystallized. This work was published last year by Wong’s group, and was featured as a “Chemistry Highlight of 2003” by Chemical & Engineering News.

But generalizing this idea to larger pores was difficult. In previous work, Wong and colleagues showed that actin, a protein found in muscle cells, also reacts with lipid membranes to create ordered structures. The actin-membrane assemblies, however, consisted of the membrane sandwiched between layers of actin, with little room to house or organize other molecules.

In the latest work, the researchers substituted a rod-shaped virus for the DNA. While having a diameter close to that of actin, the virus has a charge density comparable to DNA. The resulting virus-membrane complexes have pore sizes about 10 times larger than the DNA-membrane complexes, and can be used to hold and organize large functional molecules.

“Even though these supramolecular systems were originally designed for gene therapy, we’ve shown that they can be used as templates for organizing other molecules,” Wong said. “An example would be the biomineralization of inorganic nanocrystals, in a way analogous to bone formation.”

To produce bone, nature uses organic molecules to organize inorganic components that become mineralized through additional chemical reactions. Scientists want to create synthetic molecules that work as nanostructured scaffolds of biomolecules and perform tasks ranging from non-viral gene therapy to biomolecular templating and nanofabrication.

“Ultimately, we would like to have designer molecules that do exactly what we want,” Wong said. “Right now we are still elucidating the rules for making these scaffolds and their interactions with inorganic components. It will take some time to move from fundamental science to supramolecular engineering.”

Co-authors of the paper with Wong are Illinois graduate students Lihua Yang, Hongjun Liang, Thomas Angelini, John Butler and Robert Coridan; and Brown University physics professor Jay Tang. The work was funded by the U.S. Department of Energy and the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>