Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers Find New Class of Planets Outside The Solar System


Two new "Neptunes" are the smallest extra-solar planets yet—but could be the first of many

In this artist’s conception, a newly discovered planet the size of Neptune orbits the cool, reddish M-dwarf star Gliese 436 Credit: NASA/G. Bacon

A team of astronomers has announced the discovery of some of the smallest planets yet detected beyond our solar system: two worlds that represent a new category of extra-solar planets, as well as significant and much-anticipated advance in the hunt for such objects.

Each of newly discovered planets is roughly comparable to the planet Neptune in our own solar system, says Geoffrey Marcy of the University of California, Berkeley, a veteran planet-hunter and a co-discoverer of this pair.

That’s still pretty big on a terrestrial scale, he says: Neptune has 17 times the mass of the Earth. But it’s tiny compared to the 120-plus extra-solar planets that have been discovered to date. Virtually all of those objects are considerably heftier than our own solar system’s heavyweights, Jupiter and Saturn, which have 318 times and 95 times the mass of the Earth, respectively.

In addition, says Marcy, these newly discovered Neptunes may well be the harbingers of many more (and smaller) things to come. Although lower-mass planets like these tend to be harder to detect than their higher-mass cousins, the statistics to date suggest they occur more frequently. And if that’s the case, he says, then an obvious extrapolation suggests that we may soon be seeing many more Neptunes—and that Earth-sized planets, if we can ever detect them, may be downright abundant.

The discovery team was supported jointly by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). They publicly announced their findings at a NASA Science Update on August 31, 2004, and will publish their results this December as two separate, peer-reviewed papers in the Astrophysical Journal.

On August 25, European astronomers announced preliminary evidence for a third Neptune-sized extra-solar planet.

The first of the two new Neptunes was discovered by a team led by Paul Butler from the Carnegie Institution of Washington, Steven Vogt from the University of California’s Lick Observatory, Marcy, and Debra Fischer from Berkeley and San Francisco State University. The group was following a detection strategy that Marcy and Butler helped pioneer more than a decade ago, and that has accounted for the majority of exoplanet detections so far. Instead of trying for an actual image—even the biggest exoplanet is much too faint and far away for that—they monitored a long list of candidate stars, looking for wobbles that might be caused by the gravitational tug of an orbiting planet. The wobbles would show up as subtle “Doppler shifts” in the starlight; by observing those shifts over a period of years, the astronomers could then infer the planet’s approximate mass, orbital size and period.

In this case, the astronomers used one of the twin Keck telescopes on Mauna Kea, Hawaii, to monitor 950 nearby stars, 150 of which were a type of cool, reddish, very low-mass star known as an "M dwarf." Now, M dwarf stars are tough targets for planet hunters, says Marcy. The galaxy is filled with them; indeed, they’re the most abundant type of star in the universe, and presumably have lots of planets. “But they’re hard because they’re so dim,” he says. “Only with the largest telescopes in the world”—for example, the Keck—“can you do the Doppler technique on them, and then only with the very nearest.”

The effort paid off in July 2003, when the astronomers noticed a periodic wobble in Gliese 436, an M dwarf star that lies about 33 light-years from Earth in the direction of the constellation of Leo. Another 12 months of data-taking confirmed the result: Gliese 436 has a Neptune-sized planet of at least 21 Earth masses that goes whipping around in its circular orbit once every 2.64 days. That corresponds to an orbital radius of roughly 4.5 million kilometers, or about 3 percent of Earth’s distance from the sun.

From our terrestrial perspective, this does make for a rather bizarre kind of solar system. Even Mercury, the closest planet to our sun, has an orbital period of 88 days and an orbital radius of 58 million kilometers—more than 12 times further out. And our own Neptune has an orbital period of 165 years and an orbital radius of 4.5 billion kilometers: a thousand times further out. Still, for reasons that no one really understands, such close-in giant planets seem to be the rule among the exo-solar systems discovered so far.

As for what this new planet is like, says Marcy, that is anybody’s guess. It could be a gas giant: a sphere of hydrogen and helium gas similar to Jupiter and Saturn. Or, with a mass near that of Neptune, it could be very much like Neptune: a thick envelope of hydrogen and helium gas surrounding a core of rock and ice. Or, being so close to its sun, it could be just like Mercury: a barren ball of rock and iron.

The other authors on the this first discovery paper are Gregory Henry, Tennessee State University; Greg Laughlin, Lick Observatory and University of California, Santa Cruz; Jason Wright, Berkeley; Jack Lissauer, NASA Ames Research Center.

The second of the new Neptunes was found in orbit around 55 Cancri: a yellow, sun-like star that lies about 41 light-years from Earth in the direction of the constellation Cancer.

In 2002, the same team had already announced their discovery of three planets around 55 Cancri, based largely on observations made by Debra Fischer at Lick Observatory. But over time they found that their subsequent Doppler measurements were beginning to vary from the predicted values in a way that suggested a fourth planet. They accordingly sent all their accumulated observations to University of Texas astronomer Barbara McArthur, who has been organizing a major campaign to study the 55 Cancri system. Combining that dataset with another 100 Doppler measurements taken with the Hobby-Eberly Telescope in Texas, McArthur and her colleagues then confirmed the star does indeed have a fourth planet. It has 18 Earth masses, an orbital period of 2.81 days, and an orbital radius of just 3.8 percent that of Earth.

The composition of this Neptune is as mysterious as the first, says Marcy: it too could be gaseous, rock-ice, or rock and iron.

On the other hand, he says, astronomers will soon have many more examples to study: he and his colleagues alone are already preparing publications on another 20 exoplanets.

In addition to McArthur, the other authors on the second paper are Michael Endl, Fritz Benedict and William Cochran, University of Texas, Austin; Fischer, Marcy, and Butler; Dominique Naef, Michel Mayor, Didier Queloz, and Stephane Udry, Observatoire de Geneve, Switzerland; Thomas Harrison, New Mexico State University.

Mitchell Waldrop | NSF News
Further information:

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

More VideoLinks >>>