Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lighting the way to better nanoscale films


Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may provide a cheaper alternative, but the structure and properties of these materials—-often no more than a few nanometers (nm) thick—-are difficult to determine. In addition, defects in the thin polymer masking materials used to "print" integrated circuits can produce malfunctioning components. Consequently, researchers would like to have a non-invasive method for scanning polymer films for defects at high resolution.

Left: The crystal structure of a thin-film polymer "seaweed" crystal that is about four micrometers wide. Brighter areas indicate parts of the crystal with the greatest "strain." Center: The same crystal with lines superimposed showing the direction of strain between the crystal’s atoms. Right: Closeup of the upper left portion of the center image.

In the Aug. 23 issue of Applied Physics Letters,* researchers at the National Institute of Standards and Technology (NIST) report on an application of a new method for studying ultrathin polymers that makes it possible to visualize defects and structure in these materials and should help improve basic understanding of crystal formation in polymers.

Using a special form of near-field scanning optical microscopy, the NIST researchers were able to determine the structure of, and "strain" (stretching between atoms) in, thin-film crystals of polystyrene. Polystyrene is a ubiquitous plastic found in foam cups, CD cases and many other products.

The films examined formed tiny crystals just 15 nm thick and about 1500 nanometers wide, which makes them difficult to study with other optical microscopes. In the NIST experiments, blue-green light was piped through a glass fiber about 50 nm wide and scanned across the sample about 10 nm above the surface. Changes in the polarization of the light (the direction of the wave’s electric field) as it transmits through the sample then were used to investigate the material’s crystal structure and to map areas of strain.

The NIST results should help scientists choose and improve polymer materials and processes for fabricating a range of microscale and nanoscale plastic devices.

Gail Porter | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>