Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Bonding States at Silicon / Silicon Dioxide Interfaces Characterisable with Light

27.08.2004


The importance of characterising the atomic structure of the silicon / silicon dioxide interface as an essential component in highly integrated circuits has steadily increased as a result of continuing miniaturisation of silicon chips. The physicists, Dr. Stefan Bergfeld, Bjoern Braunschweig and Prof. Dr. Winfried Daum, Institute of Physics and Physical Technologies at the Technical University of Clausthal, have succeeded in characterising the change in bond structure of interfacial atoms during the oxidation of a silicon surface by a purely optical method. The results of the research have been published in the scientific journal, Physical Review Letters, Volume 93, No. 9 (online on 27th August 2004).



In the present work, the atmospheric oxidation of a hydrogen-covered (111)-oriented silicon surface has been studied, and special bonding states of the silicon atoms have been identified. The scientists also observed these bonding states after the technically relevant thermal oxidation. For characterising the interfaces, the physicists apply a special nonlinear-optical method, with which the laser light is converted by interfacial atoms to photons with energies in the near ultraviolet range by doubling of the frequency. This purely optical spectroscopic method with frequency doubling allows nondestructive characterisation of the oxidation process under real conditions and also provides very high interfacial sensitivity, in comparison with other optical methods.

The Si(111)-SiO2 interface is a prime example of an abrupt transition from a perfect crystal structure to an amorphous oxide. In contrast to the technologically more relevant Si(100) surface, the surface of a (111)-terminated silicon crystal possesses a structure consisting of bi-layers, in which changes in the bond structure resulting from oxidation can be observed especially well.


For further information, contact:

TU Clausthal
Institut fuer Physik und Physikalische Technologien
Abteilung Physik der Ober- und Grenzflaechen
Prof. Dr. Winfried Daum
eMail: winfried.daum@tu-clausthal.de
Tel. (05323) 72-2144
Fax (05323) 72-3600

Winfried Daum | alfa
Further information:
http://www.tu-clausthal.de

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>