Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Bonding States at Silicon / Silicon Dioxide Interfaces Characterisable with Light

27.08.2004


The importance of characterising the atomic structure of the silicon / silicon dioxide interface as an essential component in highly integrated circuits has steadily increased as a result of continuing miniaturisation of silicon chips. The physicists, Dr. Stefan Bergfeld, Bjoern Braunschweig and Prof. Dr. Winfried Daum, Institute of Physics and Physical Technologies at the Technical University of Clausthal, have succeeded in characterising the change in bond structure of interfacial atoms during the oxidation of a silicon surface by a purely optical method. The results of the research have been published in the scientific journal, Physical Review Letters, Volume 93, No. 9 (online on 27th August 2004).



In the present work, the atmospheric oxidation of a hydrogen-covered (111)-oriented silicon surface has been studied, and special bonding states of the silicon atoms have been identified. The scientists also observed these bonding states after the technically relevant thermal oxidation. For characterising the interfaces, the physicists apply a special nonlinear-optical method, with which the laser light is converted by interfacial atoms to photons with energies in the near ultraviolet range by doubling of the frequency. This purely optical spectroscopic method with frequency doubling allows nondestructive characterisation of the oxidation process under real conditions and also provides very high interfacial sensitivity, in comparison with other optical methods.

The Si(111)-SiO2 interface is a prime example of an abrupt transition from a perfect crystal structure to an amorphous oxide. In contrast to the technologically more relevant Si(100) surface, the surface of a (111)-terminated silicon crystal possesses a structure consisting of bi-layers, in which changes in the bond structure resulting from oxidation can be observed especially well.


For further information, contact:

TU Clausthal
Institut fuer Physik und Physikalische Technologien
Abteilung Physik der Ober- und Grenzflaechen
Prof. Dr. Winfried Daum
eMail: winfried.daum@tu-clausthal.de
Tel. (05323) 72-2144
Fax (05323) 72-3600

Winfried Daum | alfa
Further information:
http://www.tu-clausthal.de

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>