Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Bonding States at Silicon / Silicon Dioxide Interfaces Characterisable with Light

27.08.2004


The importance of characterising the atomic structure of the silicon / silicon dioxide interface as an essential component in highly integrated circuits has steadily increased as a result of continuing miniaturisation of silicon chips. The physicists, Dr. Stefan Bergfeld, Bjoern Braunschweig and Prof. Dr. Winfried Daum, Institute of Physics and Physical Technologies at the Technical University of Clausthal, have succeeded in characterising the change in bond structure of interfacial atoms during the oxidation of a silicon surface by a purely optical method. The results of the research have been published in the scientific journal, Physical Review Letters, Volume 93, No. 9 (online on 27th August 2004).



In the present work, the atmospheric oxidation of a hydrogen-covered (111)-oriented silicon surface has been studied, and special bonding states of the silicon atoms have been identified. The scientists also observed these bonding states after the technically relevant thermal oxidation. For characterising the interfaces, the physicists apply a special nonlinear-optical method, with which the laser light is converted by interfacial atoms to photons with energies in the near ultraviolet range by doubling of the frequency. This purely optical spectroscopic method with frequency doubling allows nondestructive characterisation of the oxidation process under real conditions and also provides very high interfacial sensitivity, in comparison with other optical methods.

The Si(111)-SiO2 interface is a prime example of an abrupt transition from a perfect crystal structure to an amorphous oxide. In contrast to the technologically more relevant Si(100) surface, the surface of a (111)-terminated silicon crystal possesses a structure consisting of bi-layers, in which changes in the bond structure resulting from oxidation can be observed especially well.


For further information, contact:

TU Clausthal
Institut fuer Physik und Physikalische Technologien
Abteilung Physik der Ober- und Grenzflaechen
Prof. Dr. Winfried Daum
eMail: winfried.daum@tu-clausthal.de
Tel. (05323) 72-2144
Fax (05323) 72-3600

Winfried Daum | alfa
Further information:
http://www.tu-clausthal.de

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>