Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Old Is The Milky Way ?

17.08.2004


VLT Observations of Beryllium in Two Old Stars Clock the Beginnings

Observations by an international team of astronomers with the UVES spectrometer on ESO’s Very Large Telescope at the Paranal Observatory (Chile) have thrown new light on the earliest epoch of the Milky Way galaxy.

The first-ever measurement of the Beryllium content in two stars in a globular cluster (NGC 6397) - pushing current astronomical technology towards the limit - has made it possible to study the early phase between the formation of the first generation of stars in the Milky Way and that of this stellar cluster. This time interval was found to amount to 200 - 300 million years.



The age of the stars in NGC 6397, as determined by means of stellar evolution models, is 13,400 +/- 800 million years. Adding the two time intervals gives the age of the Milky Way, 13,600 +/- 800 million years.

The currently best estimate of the age of the Universe, as deduced, e.g., from measurements of the Cosmic Microwave Background, is 13,700 million years. The new observations thus indicate that the first generation of stars in the Milky Way galaxy formed soon after the end of the ~200 million-year long "Dark Ages" that succeeded the Big Bang. Read the full text of ESO Press Release 20/04 and see the three photos at http://www.eso.org/outreach/press-rel/pr-2004/pr-20-04.html

The age of the Milky Way

How old is the Milky Way ? When did the first stars in our galaxy ignite ?

A proper understanding of the formation and evolution of the Milky Way system is crucial for our knowledge of the Universe. Nevertheless, the related observations are among the most difficult ones, even with the most powerful telescopes available, as they involve a detailed study of old, remote and mostly faint celestial objects.

Globular clusters and the ages of stars

Modern astrophysics is capable of measuring the ages of certain stars, that is the time elapsed since they were formed by condensation in huge interstellar clouds of gas and dust. Some stars are very "young" in astronomical terms, just a few million years old like those in the nearby Orion Nebula. The Sun and its planetary system was formed about 4,560 million years ago, but many other stars formed much earlier. Some of the oldest stars in the Milky Way are found in large stellar clusters, in particular in "globular clusters" (PR Photo 23a/04), so called because of their spheroidal shape.

Stars belonging to a globular cluster were born together, from the same cloud and at the same time. Since stars of different masses evolve at different rates, it is possible to measure the age of globular clusters with a reasonably good accuracy. The oldest ones are found to be more than 13,000 million years old.

Still, those cluster stars were not the first stars to be formed in the Milky Way. We know this, because they contain small amounts of certain chemical elements which must have been synthesized in an earlier generation of massive stars that exploded as supernovae after a short and energetic life. The processed material was deposited in the clouds from which the next generations of stars were made, cf. ESO PR 03/01.

Despite intensive searches, it has until now not been possible to find less massive stars of this first generation that might still be shining today. Hence, we do not know when these first stars were formed. For the time being, we can only say that the Milky Way must be older than the oldest globular cluster stars.

But how much older?

Beryllium to the rescue

What astrophysicists would like to have is therefore a method to measure the time interval between the formation of the first stars in the Milky Way (of which many quickly became supernovae) and the moment when the stars in a globular cluster of known age were formed. The sum of this time interval and the age of those stars would then be the age of the Milky Way.

New observations with the VLT at ESO’s Paranal Observatory have now produced a break-through in this direction. The magic element is "Beryllium"!

Beryllium is one of the lightest elements - the nucleus of the most common and stable isotope (Beryllium-9) consists of four protons and five neutrons. Only hydrogen, helium and lithium are lighter. But while those three were produced during the Big Bang, and while most of the heavier elements were produced later in the interior of stars, Beryllium-9 can only be produced by "cosmic spallation". That is, by fragmentation of fast-moving heavier nuclei - originating in the mentioned supernovae explosions and referred to as energetic "galactic cosmic rays" - when they collide with light nuclei (mostly protons and alpha particles, i.e. hydrogen and helium nuclei) in the interstellar medium.

Galactic cosmic rays and the Beryllium clock

The galactic cosmic rays travelled all over the early Milky Way, guided by the cosmic magnetic field. The resulting production of Beryllium was quite uniform within the galaxy. The amount of Beryllium increased with time and this is why it might act as a "cosmic clock".

The longer the time that passed between the formation of the first stars (or, more correctly, their quick demise in supernovae explosions) and the formation of the globular cluster stars, the higher was the Beryllium content in the interstellar medium from which they were formed. Thus, assuming that this Beryllium is preserved in the stellar atmosphere, the more Beryllium is found in such a star, the longer is the time interval between the formation of the first stars and of this star.

The Beryllium may therefore provide us with unique and crucial information about the duration of the early stages of the Milky Way.

A very difficult observation

So far, so good. The theoretical foundations for this dating method were developed during the past three decades and all what is needed is then to measure the Beryllium content in some globular cluster stars.

But this is not as simple as it sounds! The main problem is that Beryllium is destroyed at temperatures above a few million degrees. When a star evolves towards the luminous giant phase, violent motion (convection) sets in, the gas in the upper stellar atmosphere gets into contact with the hot interior gas in which all Beryllium has been destroyed and the initial Beryllium content in the stellar atmosphere is thus significantly diluted. To use the Beryllium clock, it is therefore necessary to measure the content of this element in less massive, less evolved stars in the globular cluster. And these so-called "turn-off (TO) stars" are intrinsically faint.

In fact, the technical problem to overcome is three-fold: First, all globular clusters are quite far away and as the stars to be measured are intrinsically faint, they appear quite faint in the sky. Even in NGC6397, the second closest globular cluster, the TO stars have a visual magnitude of ~16, or 10000 times fainter than the faintest star visible to the unaided eye. Secondly, there are only two Beryllium signatures (spectral lines) visible in the stellar spectrum and as these old stars do contain comparatively little Beryllium, those lines are very weak, especially when compared to neighbouring spectral lines from other elements. And third, the two Beryllium lines are situated in a little explored spectral region at wavelength 313 nm, i.e., in the ultraviolet part of the spectrum that is strongly affected by absorption in the terrestrial atmosphere near the cut-off at 300 nm, below which observations from the ground are no longer possible.

It is thus no wonder that such observations had never been made before, the technical difficulties were simply unsurmountable.

VLT and UVES do the job

Using the high-performance UVES spectrometer on the 8.2-m Kuyen telescope of ESO’s Very Large Telescope at the Paranal Observatory (Chile) which is particularly sensitive to ultraviolet light, a team of ESO and Italian astronomers succeeded in obtaining the first reliable measurements of the Beryllium content in two TO-stars (denoted "A0228" and "A2111") in the globular cluster NGC 6397 (PR Photo 23b/04). Located at a distance of about 7,200 light-years in the direction of a rich stellar field in the southern constellation Ara, it is one of the two nearest stellar clusters of this type; the other is Messier 4.

The observations were done during several nights in the course of 2003. Totalling more than 10 hours of exposure on each of the 16th-magnitude stars, they pushed the VLT and UVES towards the technical limit. Reflecting on the technological progress, the leader of the team, ESO-astronomer Luca Pasquini, is elated: "Just a few years ago, any observation like this would have been impossible and just remained an astronomer’s dream!"

The resulting spectra (PR Photo 23c/04) of the faint stars show the weak signatures of Beryllium ions (Be II). Comparing the observed spectrum with a series of synthetic spectra with different Beryllium content (in astrophysics: "abundance") allowed the astronomers to find the best fit and thus to measure the very small amount of Beryllium in these stars: for each Beryllium atom there are about 2,224,000,000,000 hydrogen atoms.

Beryllium lines are also seen in another star of the same type as these stars, HD 218052, cf. PR Photo 23c/04. However, it is not a member of a cluster and its age is by far not as well known as that of the cluster stars. Its Beryllium content is quite similar to that of the cluster stars, indicating that this field star was born at about the same time as the cluster.

From the Big Bang until now

According to the best current spallation theories, the measured amount of Beryllium must have accumulated in the course of 200 - 300 million years. Italian astronomer Daniele Galli, another member of the team, does the calculation: "So now we know that the age of the Milky Way is this much more than the age of that globular cluster - our galaxy must therefore be 13,600 ± 800 million years old. This is the first time we have obtained an independent determination of this fundamental value!".

Within the given uncertainties, this number also fits very well with the current estimate of the age of the Universe, 13,700 million years, that is the time elapsed since the Big Bang. It thus appears that the first generation of stars in the Milky Way galaxy was formed at about the time the "Dark Ages" ended, now believed to be some 200 million years after the Big Bang.

It would seem that the system in which we live may indeed be one of the "founding" members of the galaxy population in the Universe.

Richard West | alfa
Further information:
http://www.eso.org
http://www.eso.org/outreach/press-rel/pr-2004/pr-20-04.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>