Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asymmetric feature shows puzzling face for superconductivity

03.08.2004


The weird behavior of electrons tunneling across an atomically flat interface within a cuprate superconductor has defied explanation by theories of high-temperature superconductivity.



As will be reported in the journal Physical Review Letters, a team of scientists led by physics professor James Eckstein at the University of Illinois at Urbana-Champaign has found a large particle-hole asymmetry in the density of states of excitations in high-temperature superconducting tunnel junctions embedded in a single crystal heterostructure. Since superconductors are supposed to possess particle-hole symmetry — according to current theories — new theoretical work may be required to explain the strange results.

In tunneling spectroscopy of superconductors, the differential conductance is proportional to the density of states in the superconductor. "Below the superconducting transition, the tunneling conductance showed a large unexpected asymmetrical feature near zero bias," Eckstein said. "This is evidence that crystals of high-temperature superconductors, atomically truncated with a titanate layer, have intrinsically broken particle-hole symmetry."


At negative bias (corresponding to tunneling of electrons from states with particle-like character) the spectra exhibited the expected superconducting gap. However, at positive bias (corresponding to tunneling of electrons into states with hole-like character) the spectra showed a dramatic step-like increase. "This clearly demonstrates the breaking of symmetry between particle-like and hole-like excitations at this interface in the superconducting state," Eckstein said.

The junction heterostructures were very carefully grown by oxide molecular beam epitaxy and optimized using in situ monitoring techniques, resulting in unprecedented crystalline perfection of the superconductor/insulator interface. It was the precise truncation of the crystal lattice at the calcium titanate interface that led to the new results.

"The interface density of states was strongly modified by superconductivity, as expected, but the resulting excitation spectrum was not particle-hole symmetric," Eckstein said. "This indicates that at the surface into which the tunneling occurred, superconductivity is very different from what it is like away from the interface."

While the origin of this effect is still being debated, it depends critically on the high degree of crystalline perfection obtained at the insulator-superconductor interface.

"The presence of this well-defined interface obviously perturbs the superconductivity," Eckstein said. "So these results can provide a new test for theories of high-temperature superconductivity."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>