Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the Secrets of Titanium, a "Key" that Assists Hydrogen Storage

26.07.2004


New research may lead to better catalysts for hydrogen fuel cells



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the New Jersey Institute of Technology have taken steps toward understanding how a titanium compound reacts with a hydrogen-storage material to catalyze the release and re-absorption of hydrogen. Their results, appearing in the July 19, 2004, issue of Applied Physics Letters, may help scientists learn how similar catalysts work, improve their performance, and possibly develop more efficient storage materials for hydrogen fuel cells.

In the late 1990s, scientists discovered that adding, or “doping,” a small amount of titanium to sodium aluminum hydride, a hydrogen storage compound (also known as sodium alanate), allows it to reversibly release and re-absorb hydrogen. In a sense, the titanium acts like a molecular “key,” a crucial component that facilitates hydrogen absorption and allows the reaction to proceed more rapidly. Until now, however, the nature of that reaction was not well understood.


“We found that the titanium resides on the surface of sodium alanate as a titanium aluminum compound called titanium aluminide, rather than entering the bulk material and replacing other atoms or occupying empty spots within the lattice,” said the study’s lead author, Brookhaven physicist Jason Graetz.

To make their finding, Graetz and his collaborators first prepared two titanium-doped samples by mechanically mixing titanium chloride and sodium alanate using a planetary mill, a device that grinds substances together using marble-sized metal spheres. They then prepared two additional samples from each doped sample (for a total of six): a dehydrided sample (containing no absorbed hydrogen) and a hydrided sample. By working with both types, the researchers were able to study the titanium’s properties before and after hydrogen absorption. This gave them one more way to determine the titanium’s role in the reaction.

The group probed the samples with high-energy x-rays at the National Synchrotron Light Source at Brookhaven, a facility that produces intense beams of x-ray, ultraviolet, and infrared light for research. Because every compound and element on Earth absorbs x-rays differently, having a unique “signature,” the researchers were able to compare the six sample signatures to those of different titanium compounds and pure titanium. From this, they determined that the titanium chloride reacted with sodium alanate to form titanium aluminide.

“Our finding is the first step toward an even more interesting discovery: determining exactly how titanium aluminide helps the hydride release and re-absorb hydrogen,” Graetz said. “Understanding that mechanism may help us identify better catalysts for the sodium alanate system and help us find dopants for new compounds that are currently impractical energy-storage materials, due to the high temperatures and pressures required for the release and re-absorption of hydrogen.”

Sodium alanate is one of several metal-based hydrogen storage materials, called metal hydrides, being investigated for use in hydrogen fuel cells. A fuel cell works like a battery: Hydrogen atoms enter the negative terminal and split into their constituent particles, protons and electrons. The protons pass through the cell to the positive terminal, while the electrons leave the cell as a stream of electric current that can power a car or appliance, for example. The electrons then re-enter the cell at the positive terminal and reunite with the protons and oxygen to form water molecules.

The known hydrides are impractical for fuel cells, which require lightweight materials with high storage capacities, because they are quite heavy and have relatively low storage capacities (less than five percent hydrogen by weight). However, they have more potential than compressed hydrogen gas or liquid hydrogen, which pose explosion and freezing risks. These forms of hydrogen must be stored in tanks under very high pressure or at temperatures cold enough to liquefy the oxygen in air.

This research was funded by Brookhaven’s Laboratory Directed Research and Development (LDRD) Program and the National Science Foundation.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>