Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-based photodetector is sensitive to ultraviolet light

20.07.2004


By depositing thin films of silicon nanoparticles on silicon substrates, researchers at the University of Illinois at Urbana-Champaign have fabricated a photodetector sensitive to ultraviolet light. Silicon-based ultraviolet sensors could prove very handy in military, security and commercial applications.



"Silicon is the most common semiconductor, but it has not been useful for detecting ultraviolet light until now," said Munir Nayfeh, a professor of physics at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "Ultraviolet light is usually absorbed by silicon and converted into heat, but we found a way to make silicon devices that absorb ultraviolet light and produce electrical current instead."

As will be reported in the August issue of the journal Photonics Technology Letters, the technique behind silicon sensing of ultraviolet light is compatible with conventional integrated circuit technology. Conveniently, both the sensor and the computer could be incorporated on the same chip.


To create their ultraviolet-based photodetectors, Nayfeh, graduate students Satish Rao, Adam Smith and Joel Therrien, and undergraduate student Osama Nayfeh begin with nanoparticles dispensed from silicon wafers using electrochemical etching. The nanoparticles are about 1 billionth of a meter in diameter and contain about 30 silicon atoms.

The researchers then deposit a thin film of the nanoparticles in a hole etched into the surface of another silicon wafer using standard lithographic techniques. Small conductive pads of gold complete the assembly. Electricity flows when ultraviolet light strikes the nanoparticles.

"Ultraviolet light efficiently couples to the nanoparticles and produces electron-hole pairs," said Nayfeh, who also is a researcher at the university’s Center for Nanoscale Science and Technology. "Contrary to what occurs in bulk silicon, the electron-hole pairs do not appreciably recombine by non-radiative processes. Strong quantum confinement allows for charge separation and collection."

Combining silicon nanoparticles with conventional silicon wafers could offer the best of both material systems, Nayfeh said. "Placing a thin layer of nanoparticles on the front of a silicon solar cell, for example, could improve the cell’s efficiency and its lifetime."

Other applications include ultraviolet-based detectors for missile-warning systems and airborne biological agents, industrial flame sensors and suntan monitors.

The National Science Foundation; the state of Illinois; the Grainger Foundation; and the Technology Research, Education, and Commercialization Center funded the work. TRECC is managed by the National Center for Supercomputing Applications and funded by a grant from the Office of Naval Research. The researchers have applied for a patent.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>