Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire on the "Vomit Comet"

16.07.2004


Twin flames burning gaseous and solid fuel pellets exhibit different chemical processes on earth and in the near zero-gravity environment of space.


Tiny pellets of fuel may be safer for hazardous places on earth and burn more efficiently in weightless space and low-gravity environments

Researchers from the USC Viterbi School of Engineering say solid fuel particles may be safer for hazardous environments on earth and burn more efficiently in the microgravity of space than gaseous fuels, which are more combustible and difficult to transport.

In the Spring 2004 issue of NASA Space Research, Fokion Egolfopoulos and Charles Campbell, of the Viterbi School’s Department of Aerospace and Mechanical Engineering, report that they have made significant progress toward understanding the complex chemical processes that take place when tiny particles of solid fuels burn.



Their findings could lead to the design of safer and more efficient solid fuels for propulsion in space or for maintaining human outposts on the moon or Mars. Their research could also benefit fire-prevention practices.

“Understanding the thermal effects is a first step toward improving fuel economy in both space vehicles and those we use on Earth,” said Egolfopoulos. “It’s also a good start towards preventing spontaneous combustion in dangerous work environments, like in lumber milling, in grain elevators or in mine galleries. It ’ s a sort of walk-before-you-run kind of thing.”

Funded by NASA, the researchers made detailed studies of solid fuel combustion, including the effects of gravity on the process. They measured the burning characteristics of various solid fuel particles on earth and in microgravity, using NASA’s KC-135 aircraft — known as the “Vomit Comet” — to simulate the weightlessness of space.

“ It takes some getting used to, but after a while, you learn to conduct the experiment very precisely, ” said Mustafa Gurhan Andac, a post-doctoral research associate from the Viterbi School’s Combustion and Fuels Laboratory, who ran the experiments in the nearly weightless environment aboard the NASA aircraft. “ You only have about 23 seconds in zero-g, so you have to ignite the flame before the zero-g parabola starts and be sure to finish the experiment and record the data during those precious seconds of weightlessness. ”
In their experiments, the team used two laminar, smooth-burning flames in an “opposed-jet” configuration (see photograph) to compare the consumption of solid fuel and gaseous fuel. The bottom burner slowly spews gas to carry solid fuel pellets to the flame, while the top burner issues particle-free gas to fuel the flame.

“Depending on the prevailing flow conditions, and characteristics of the particles, some particles will ignite and burn completely, whereas others behave as half-inert and burn only partially,” Egolfopoulos said. The researchers measured particle size, speed and distribution to determine the optimal conditions for efficient combustion.

“In reduced gravity, a low-speed gas was more effective for complete fuel consumption,” said Campbell. “However, when we ignited the pellets in our laboratory at USC, in earth’s gravity, a much higher gas velocity was needed to carry the pellets to the flame. Increased speed caused some of the fuel pellets to burn incompletely.”

NASA is finding additional applications for the work as the space agency looks to longer spaceflight missions and human exploration of the moon and Mars. In trips to the moon or Mars, solid fuels derived from the lunar or Martian soil, or solid carbon, extracted from the Martian atmosphere, may fuel the astronauts ’ return flights to Earth.

The researchers have created a computational model to numerically simulate their experiments and predict the combustion of solid fuel particles in a gaseous stream, based on thermal conditions and particle properties.

They will present their findings, and a few surprises, at the 30 th International Symposium on Combustion, to be held July 25-30 in Chicago, Illinois.

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>