Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show Io vaporizing rock gases into atmosphere

16.06.2004


Hottest body outside the sun


Io, Io, it’s the hottest place to go. The satellite of Jupiter is the most volcanically active body, too. How hot is it? WUSTL planetary scientists have shown that Io is so hot its lavas are vaporizing sodium, potassium, silicon and iron gases into its atmosphere.



The hottest spot in the solar system is neither Mercury, Venus, nor St. Louis in the summer. Io, one of the four satellites that the Italian astronomer Galileo discovered orbiting Jupiter almost 400 years ago, takes that prize. The Voyager spacecraft discovered volcanic activity on Io over 20 years ago and subsequent observations show that Io is the most volcanically active body in the solar system. The Galileo spacecraft, named in honor of the astronomer Galileo, found volcanic hot spots with temperatures as high as 2,910 Fahrenheit (1,610 Celsius).

Now computer models of volcanic eruptions on Io performed by researchers at Washington University in St. Louis show that the lavas are so hot that they are vaporizing sodium, potassium, silicon and iron and probably other gases as well into its atmosphere.


Using an updated version of MAGMA, a versatile computer program he developed 15 years ago with a Harvard University colleague, Bruce Fegley, Jr., Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, found that some of these elements are vaporized at least partly as single-atom gases. Others are vaporized in different molecular forms, for instance, silicon monoxide, silicon dioxide and iron monoxide.

"Reaction of these gases with sulfur and chlorine species in volcanic gases could lead to the formation of such unusual gases as sodium chloride, potassium chloride, magnesium dichloride and iron dichloride, " Fegley said.

In 2000, Fegley and former Washington University colleague Mikhail Zolotov, Ph.D., now at Arizona Sate University, predicted formation of sodium chloride and potassium chloride vapor in volcanic gases on Io. Three years later astronomers found sodium chloride gas on Io. However, these observations were not sensitive enough to detect the less abundant potassium chloride vapor.

Now Fegley has found that sodium and potassium in Ionian volcanic gases are being vaporized from the hot lavas. Fegley and research assistant Laura Schaefer of Washington University used data from the Galileo mission and Earth-based observations from high-powered telescopes in their NASA-funded research. They published their results in the May 2004 issue of Icarus, the leading planetary science journal.

"We’re basically doing geology on Io using data from telescopes on Earth, which shows that observations like this can compete with expensive space missions," said Fegley. "It’s amazing how hot and how volcanically active Io is. It is 30 times more active than Earth. It’s the hottest body outside of the sun in the solar system."

The innermost of the four major satellites of Jupiter - there are at least 16 - Io gets its high rate of volcanism from tidal interactions with Jupiter, which has the strongest magnetic field of all the planets. Over 100 active volcanoes have been identified on Io. Hotspots there have temperatures as high as 1,600 degrees Celsius. This is several hundred degrees hotter than terrestrial volcanoes like Kilauea in Hawaii, which has a temperature of about 1,000 Celsius (1,830 Fahrenheit).

Fegley and Schaefer found that silicon monoxide is the major silicon-bearing gas over the lavas.

"The interesting thing about this is that astronomers have observed silicon monoxide in other environments in interstellar space, most notably in the atmospheres of cool stars," said Fegley.

Astronomical observations of actively erupting volcanoes on Io may be able to detect the silicon monoxide gas in its atmosphere.

Fegley and Schaefer recommend an Io volcanic probe mission to directly measure the pressure, temperature and composition of gases of Pele, one of Io’s most active volcanoes. Such an endeavor is "feasible using present technology," Fegley said. "It would vastly expand our knowledge of the most volcanically active body in the solar system."

The volcanic probe mission would represent an advance in the effort to unveil some of Io’s mysteries, such as how the satellite, about the size of our own Moon, can maintain its high magma temperatures without being nearly totally molten, and how does Io maintain a strong enough lithosphere to support mountains higher than Mount Everest?

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/892.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>