Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue mathematician claims proof for Riemann hypothesis

09.06.2004


A Purdue University mathematician claims to have proven the Riemann hypothesis, often dubbed the greatest unsolved problem in mathematics.



Louis De Branges de Bourcia, or de Branges (de BRONZH) as he prefers to be called, has posted a 23-page paper detailing his attempt at a proof on his university Web page. While mathematicians ordinarily announce their work at formal conferences or in scientific journals, the spirited competition to prove the hypothesis – which carries a $1 million prize for whomever accomplishes it first – has encouraged de Branges to announce his work as soon as it was completed.

"I invite other mathematicians to examine my efforts," said de Branges, who is the Edward C. Elliott Distinguished Professor of Mathematics in Purdue’s School of Science. "While I will eventually submit my proof for formal publication, due to the circumstances I felt it necessary to post the work on the Internet immediately."


The Riemann hypothesis is a highly complex theory about the nature of prime numbers – those numbers divisible only by 1 and themselves – that has stymied mathematicians since 1859. In that year, Bernhard Riemann published a conjecture about how prime numbers were distributed among other numbers. He labored over his own theory until his death in 1866, but was ultimately unable to prove it.

The problem attracted a cult following among mathematicians, but after nearly 150 years no one has ever definitively proven Riemann’s theory to be either true or false. Although a definitive solution would not have any immediate industrial application, in 2001 the Clay Mathematics Institute in Cambridge, Mass., offered a $1 million purse to whomever proves it first.

At least two books for popular audiences have appeared recently that describe the efforts of mathematicians to solve the puzzle. One of the books, Karl Sabbagh’s "Dr. Riemann’s Zeros," provides an extensive profile of de Branges and offers one of the mathematician’s earlier, incomplete attempts at a proof as an appendix.

De Branges is perhaps best known for solving another trenchant problem in mathematics, the Bieberbach conjecture, about 20 years ago. Since then, he has occupied himself to a large extent with the Riemann hypothesis and has attempted its proof several times. His latest efforts have neither been peer reviewed nor accepted for publication, but Leonard Lipshitz, head of Purdue’s mathematics department, said that de Branges’ claim should be taken seriously.

"De Branges’ work deserves attention from the mathematics community," he said. "It will obviously take time to verify his work, but I hope that anyone with the necessary background will read his paper so that a useful discussion of its merits can follow."

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040608.DeBranges.Riemann.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>