Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOODS uncovers hidden black holes in the distant universe

02.06.2004


Images from NASA’s new Spitzer Space Telescope have allowed researchers to detect the long sought population of "missing" supermassive black holes that powered the bright cores of the earliest active galaxies in the young universe. The discovery completes a full accounting of all the X-ray sources seen in one of the deepest surveys of the universe ever taken. The results were presented at the meeting of the American Astronomical Society in Denver, Colorado.



Mark Dickinson, of the National Optical Astronomy Observatory in Tucson, Ariz., and Principal Investigator for the new observations, says, "With these ultra-deep Spitzer images, we are easily seeing objects throughout time and space, out to redshifts of 6 or more, where the most distant known galaxies lie. Moreover, we see some objects that are completely invisible to optical telescopes, but whose existence was hinted at by previous observations from the Chandra and Hubble Observatories."

The project combined the power of NASA’s three Great Observatories in space - the Hubble Space Telescope (HST), the Chandra X-ray Observatory, and the Spitzer Space Telescope (SST). All three telescopes peered across 13 billion light-years of space into a small region of dark sky (called the Great Observatories Origins Deep Survey, GOODS) that is ideal for perusing thousands of galaxies.


Each observatory works with different wavelengths of electromagnetic radiation; Chandra detects high-energy X-rays, Hubble discriminates visible light, and Spitzer recognizes the infrared. Their combined data gave images that were not possible with data from any one observatory alone.

"The great sensitivity of the new Spitzer infrared cameras, and with the superb spatial resolution of Chandra and Hubble, means that finding all of the black holes in distant galaxies is now possible," says GOODS astronomer Meg Urry, professor of physics and astronomy, and Director of the Yale Center for Astronomy & Astrophysics at Yale University.

Chandra detected X-rays from over two hundred X-ray sources believed to be supermassive black holes lying in the centers of young galaxies. The X-rays are produced by interstellar gas that is attracted by the gravity of the black holes and is heated to very high temperatures just before it falls in.

Combining data from the three Great Observatories, Urry’s team took a census of the supermassive black holes that formed 2-5 billion years after the big bang. Theoretical arguments had suggested that most of these young black holes are shrouded by dust but few had previously been found. Now the GOODS data have verified that "most, perhaps three-quarters, of the active galactic nuclei in the early Universe are shrouded," says Urry. They were missed because their visible radiation is so dim they look like faint, ordinary galaxies. "With the new Spitzer data," says Urry, "these very luminous, distant objects are easily visible."

"The longer-wavelength Spitzer data still to come will reveal even more shrouded AGNs," she adds, "including some, missed even by X-ray observations that look like ultraluminous infrared galaxies."

Seven of the objects detected in the Spitzer images may be part of the long-sought population of "missing" supermassive black holes that powered the bright cores of the very earliest active galaxies. Hubble’s Advanced Camera for surveys revealed optical galaxies around almost all the X-ray black holes. However, there remained seven mysterious X-ray sources for which there was no optical galaxy in the Hubble images.

Astronomer Anton Koekemoer of the Space Telescope Science Institute in Baltimore, Md., who discovered these sources, presented three intriguing possibilities for their origin: "The galaxies around these black holes may be completely hidden by thick clouds of dust absorbing all their light, or may contain very old, red stars. Or some of them could be the most distant black holes ever observed - perhaps as far as 13 billion light-years." In this case all their optical light would be shifted to very long infrared wavelengths by expansion of the Universe.

Because Spitzer observes in infrared light, at wavelengths up to 100 times longer than those probed by Hubble, it was able to detect the telltale infrared glow from the host galaxies around these optically invisible X-ray black holes. Additional Spitzer observations later this year will help confirm what kind of objects these are.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu/
http://www.spitzer.caltech.nasa.gov/
http://hubblesite.org/news/2004/19

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>