Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory finds middle ground between conflicting evidence for first stars

02.06.2004


The very first stars that formed early in the history of the universe were smaller than the massive giants implied by the results of a NASA research satellite, but still larger than the typical stars found in our galaxy today, according to a research team led by the University of Chicago’s Jason Tumlinson.




"We have managed to reconcile within a single theory the two very different leading indicators of the nature of the first stars," said Tumlinson, the Edwin Hubble Scientist in Astronomy & Astrophysics at the University of Chicago. Tumlinson will present the theory June 1 at the American Astronomical Society meeting in Denver. His co-authors are the University of Colorado’s Aparna Venkatesan and J. Michael Shull.

No telescope is powerful enough yet to see the first stars, but astronomers can guess at their existence based on the stellar clues they leave behind. In 2001 and 2002, NASA’s Wilkinson Microwave Anistropy Probe (WMAP) looked at the oldest light in the universe left over from the big bang, the cosmic microwave background, and found one such clue in the form of ionized (electrically charged) gas floating between the galaxies. WMAP showed that this intergalactic gas was ionized approximately 200 million years after the big bang.


"Very massive stars, with roughly 200 to 500 times the mass of the sun, and more massive than we see anywhere today, are extremely efficient at producing this ionizing radiation," Tumlinson said. This implies that the earliest stars were massive enough to cause the ionization.

But the oldest stars in our galaxy that astronomers can see in the sky today are on average approximately 13 billion years old. "They would have formed just after the first stars and out of the very gas and heavy elements that were strewn into space when the earliest stars exploded as supernovae," said Venkatesan, a National Science Foundation Fellow at Colorado and 2000 University of Chicago Ph.D. alumna.

The problem is that the ratio of heavy elements observed in the second generation of stars could not have been produced in the most massive stars associated with the WMAP studies.

"It was our goal to reconcile these two conflicting pieces of evidence," Tumlinson said.

His team reconciled the evidence by formulating a theory showing how stars with a mass of 20 to 100 times that of the sun could both be large enough to satisfy the WMAP results, yet still produce the ratio of heavy elements detected by ground-based telescopes in very old stars.

"We’re not saying the very massive stars couldn’t have formed at some low level. We’re saying that for early heavy element production you need mostly stars that are massive but not extremely massive."

This theory meshes well with what astronomers know about how stars of various masses form in the galaxy.

"There are a lot of very low-mass stars like the sun, and as you go up in stellar mass, the numbers get more rare," Tumlinson said. "There are a very few stars of high mass, say a hundred solar masses in our galaxy. According to our theory, these massive stars were much more common in the first generation."

Problems that remain to be solved include determining how long the conditions could be maintained for forming the first stars from primordial gas and how these objects can be detected in the future, Venkatesan said.

"Predicting how the first stars affect their environment and whether they resemble the stars in our own galactic backyard at all is a critical input for the planning of future telescopes and instruments and in interpreting their data," she said.


The project was funded by NASA and the National Science Foundation.

Steve Koppes | EurekAlert!
Further information:
http://astro.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>