Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists seek cause for what makes good cell go bad


Genetic mutations - sudden, random and usually harmful changes to the structure of a gene - are only one factor that determines the ultimate fate of a cell. Chicago scientists have discovered that a non-genetic molecular process also can play a role, and that experimenters can influence this process in bacteria, they report in the April 1 issue of the journal Nature.

The research team, led by Philippe Cluzel, Assistant Professor in Physics at the University of Chicago, arrived at its finding by analyzing E. coli’s chemotaxis system, the system that transmits the biochemical signals responsible for cell locomotion.

"We studied this simple system in bacteria as a model system for the general study of signal transduction networks," Cluzel said. "Signal transduction networks are everywhere in nature. The division of our cells is controlled by a signal transduction network, and its malfunction causes cancers."

The network that controls the movement of E. coli, a single-celled organism, is much simpler than the system that divides human cells. But signal transduction networks exhibit the same design principles across species, Cluzel said. Consequently, researchers will now attempt to apply their research methods to higher organisms.

A combination of traditional genetic experiments and computer simulations contributed to the study. "The methods they’re using I think in many ways are the future of biology," said Michael North, deputy director of the Center for Complex Adaptive Systems Simulation at Argonne National Laboratory. North, who did not participate in the study but who is familiar with its findings, lauded Cluzel and his co-authors for their mathematical rigor and for pushing signal transduction research to new levels of volume and efficiency. "They were able to collect more data than anyone had in the past by a wide margin," North said.

Cluzel’s team focused its study on monitoring and analyzing the intracellular signals that control the bacterium’s flagella--its whip-like arms. The researchers found that they could affect how often the bacteria switched their direction of motion by altering the concentration of a key protein in its signal transduction network. Previous studies performed at the population level had concluded that the bacteria switched their direction at a steady rate. "We showed that at the single-cell level it was totally the other way around," Cluzel said. "Variability is a part of nature and this can be regulated."

Previous researchers had come to a different conclusion because they applied different statistical methods to their studies. Biologists usually average their data on the behavior of organisms because population statistics usually meet their experimental needs. But averaging eliminates much of the information scientists need to understand individual variability.

Like biologists, physicists also encounter widely fluctuating data in some of their experiments. This "noise" actually helps physicists determine the basic characteristics of conducting materials as electric signals travel through them. Similarly, Cluzel said, biological noise "can carry important information about the intracellular molecular mechanisms taking place within a cell."

In addition to carrying out experiments on E. coli’s transduction network, the researchers also reproduced its components in a computer simulation and obtained the same results. In future studies, the team will apply similar approaches to characterize the molecular origin of cell fate variability in higher organisms.

Cluzel and his research team display a wide range of scientific training. Cluzel received his Ph.D. in physics at the Institut Marie Curie in Paris, where both a physicist and a biologist served as dual advisers for his research. Cluzel later spent four years conducting research in a molecular biology laboratory at Princeton University. He now is a member of the Institute for Biophysical Dynamics, which fosters scientific collaborations between physical and biological scientists at the University.

Cluzel’s co-leading authors include Ekaterina Korobkova, a graduate student in chemistry, and Thierry Emonet, a Research Associate in the Institute for Biophysical Dynamics, both at the University of Chicago. Completing the team are Jose Vilar, a theoretical physicist at the Sloan Kettering Cancer Center in New York, and Thomas Shimizu, who does computer simulations of cells, of Keio University in Japan.

Steve Koppes | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists invented method of catching bacteria with 'photonic hook'
20.03.2018 | ITMO University

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>