Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists seek cause for what makes good cell go bad

01.04.2004


Genetic mutations - sudden, random and usually harmful changes to the structure of a gene - are only one factor that determines the ultimate fate of a cell. Chicago scientists have discovered that a non-genetic molecular process also can play a role, and that experimenters can influence this process in bacteria, they report in the April 1 issue of the journal Nature.



The research team, led by Philippe Cluzel, Assistant Professor in Physics at the University of Chicago, arrived at its finding by analyzing E. coli’s chemotaxis system, the system that transmits the biochemical signals responsible for cell locomotion.

"We studied this simple system in bacteria as a model system for the general study of signal transduction networks," Cluzel said. "Signal transduction networks are everywhere in nature. The division of our cells is controlled by a signal transduction network, and its malfunction causes cancers."


The network that controls the movement of E. coli, a single-celled organism, is much simpler than the system that divides human cells. But signal transduction networks exhibit the same design principles across species, Cluzel said. Consequently, researchers will now attempt to apply their research methods to higher organisms.

A combination of traditional genetic experiments and computer simulations contributed to the study. "The methods they’re using I think in many ways are the future of biology," said Michael North, deputy director of the Center for Complex Adaptive Systems Simulation at Argonne National Laboratory. North, who did not participate in the study but who is familiar with its findings, lauded Cluzel and his co-authors for their mathematical rigor and for pushing signal transduction research to new levels of volume and efficiency. "They were able to collect more data than anyone had in the past by a wide margin," North said.

Cluzel’s team focused its study on monitoring and analyzing the intracellular signals that control the bacterium’s flagella--its whip-like arms. The researchers found that they could affect how often the bacteria switched their direction of motion by altering the concentration of a key protein in its signal transduction network. Previous studies performed at the population level had concluded that the bacteria switched their direction at a steady rate. "We showed that at the single-cell level it was totally the other way around," Cluzel said. "Variability is a part of nature and this can be regulated."

Previous researchers had come to a different conclusion because they applied different statistical methods to their studies. Biologists usually average their data on the behavior of organisms because population statistics usually meet their experimental needs. But averaging eliminates much of the information scientists need to understand individual variability.

Like biologists, physicists also encounter widely fluctuating data in some of their experiments. This "noise" actually helps physicists determine the basic characteristics of conducting materials as electric signals travel through them. Similarly, Cluzel said, biological noise "can carry important information about the intracellular molecular mechanisms taking place within a cell."

In addition to carrying out experiments on E. coli’s transduction network, the researchers also reproduced its components in a computer simulation and obtained the same results. In future studies, the team will apply similar approaches to characterize the molecular origin of cell fate variability in higher organisms.

Cluzel and his research team display a wide range of scientific training. Cluzel received his Ph.D. in physics at the Institut Marie Curie in Paris, where both a physicist and a biologist served as dual advisers for his research. Cluzel later spent four years conducting research in a molecular biology laboratory at Princeton University. He now is a member of the Institute for Biophysical Dynamics, which fosters scientific collaborations between physical and biological scientists at the University.


Cluzel’s co-leading authors include Ekaterina Korobkova, a graduate student in chemistry, and Thierry Emonet, a Research Associate in the Institute for Biophysical Dynamics, both at the University of Chicago. Completing the team are Jose Vilar, a theoretical physicist at the Sloan Kettering Cancer Center in New York, and Thomas Shimizu, who does computer simulations of cells, of Keio University in Japan.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>