Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists have helped discover a new state of matter that may shed light on the fabric of the universe

12.01.2004


The University team of 14 is part of a group of 300 physicists from 13 countries known as the ‘Belle collaboration’. They have discovered a sub-atomic particle that they are having difficulty explaining and difficulty fitting with any current theory that attempts to describe matter.



Their research will be published in Physical Review Letters (in press).

“It could mean some of the standard and accepted theories on matter will need to be modified to incorporate some new physics,” says University of Melbourne doctoral student in physics and Belle team member, Mr Craig Everton.


The sub-atomic particle they believe could be a meson. A meson by itself is a relatively obscure particle, but one which is made up of quarks, the basic building blocks of not just life, but everything that exists in this universe – as we know it.

This ‘mystery meson’ weighs about the same as a single atom of helium (a heavy-weight by sub-atomic particle standards) and exists for only about one billionth of a trillionth of a second before it decays to other longer-lived, more familiar particles.

“This may seem extremely short-lived by any human standard, but it is nearly an eternity for a sub-atomic particle this heavy,” says Everton.

The team discovered their meson, technically known as X(3872), using a giant electron collider, or the High Energy Accelerator Research organisation (KEK) in Tsukuba, Japan.

This particular electron collider is three kilometres in circumference and acts as a meson factory, churning out what are known a ‘B mesons’ that are studied by physicists worldwide.

“We are in the business of studying quarks, as it is thought they hold the key to understanding many of the principle elements of how all matter in the universe (including life) is constructed,” says Everton.

“Mesons have little direct bearing on life itself. They exist because they can,” he says.

“But to study quarks we need to understand mesons, and X(3872) has got the international physics community both baffled and excited.

“Particle physics is now beginning to merge together the disciplines of cosmology and astrophysics and give new perspectives on stuff such as the evolution and construction of the universe and the nature of dark matter.”

A normal meson particle is comprised of a quark and an antiquark that are held together by the ‘color’ force, or ‘strong’ force because it is the most powerful force in nature.

The large variety of meson particles that have been found to date reflect the many different ways that these combinations can be accomplished. The mass and the decay properties of X(3872), however, do not match theoretical expectations for any conceivable quark-antiquark arrangement.

Theoretical physicists around the world are considering a number of potential explanations. These include modifications to the theory of the color force, or the possibility that the X(3872) is the first example to be seen of a new type of meson, one that is made from four quarks. That is, two quarks and two antiquarks.

“This new sub-atomic particle will mean either the accepted ‘Standard Model’ for the explanation of matter needs to be modified to incorporate new physics, or it could be the first ever discovery of long sought after 4-quark particle. This would be a relief for many as it would confirm the Standard Model,” says Everton.

The Belle discovery was recently confirmed by researchers with the CDF (Collider Detector at Fermilab) experiment at the Fermi National Accelerator Laboratory in Illinois, home of the Tevatron, the world’s largest electron collider.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/articleid_1159.html

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>