Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists have helped discover a new state of matter that may shed light on the fabric of the universe

12.01.2004


The University team of 14 is part of a group of 300 physicists from 13 countries known as the ‘Belle collaboration’. They have discovered a sub-atomic particle that they are having difficulty explaining and difficulty fitting with any current theory that attempts to describe matter.



Their research will be published in Physical Review Letters (in press).

“It could mean some of the standard and accepted theories on matter will need to be modified to incorporate some new physics,” says University of Melbourne doctoral student in physics and Belle team member, Mr Craig Everton.


The sub-atomic particle they believe could be a meson. A meson by itself is a relatively obscure particle, but one which is made up of quarks, the basic building blocks of not just life, but everything that exists in this universe – as we know it.

This ‘mystery meson’ weighs about the same as a single atom of helium (a heavy-weight by sub-atomic particle standards) and exists for only about one billionth of a trillionth of a second before it decays to other longer-lived, more familiar particles.

“This may seem extremely short-lived by any human standard, but it is nearly an eternity for a sub-atomic particle this heavy,” says Everton.

The team discovered their meson, technically known as X(3872), using a giant electron collider, or the High Energy Accelerator Research organisation (KEK) in Tsukuba, Japan.

This particular electron collider is three kilometres in circumference and acts as a meson factory, churning out what are known a ‘B mesons’ that are studied by physicists worldwide.

“We are in the business of studying quarks, as it is thought they hold the key to understanding many of the principle elements of how all matter in the universe (including life) is constructed,” says Everton.

“Mesons have little direct bearing on life itself. They exist because they can,” he says.

“But to study quarks we need to understand mesons, and X(3872) has got the international physics community both baffled and excited.

“Particle physics is now beginning to merge together the disciplines of cosmology and astrophysics and give new perspectives on stuff such as the evolution and construction of the universe and the nature of dark matter.”

A normal meson particle is comprised of a quark and an antiquark that are held together by the ‘color’ force, or ‘strong’ force because it is the most powerful force in nature.

The large variety of meson particles that have been found to date reflect the many different ways that these combinations can be accomplished. The mass and the decay properties of X(3872), however, do not match theoretical expectations for any conceivable quark-antiquark arrangement.

Theoretical physicists around the world are considering a number of potential explanations. These include modifications to the theory of the color force, or the possibility that the X(3872) is the first example to be seen of a new type of meson, one that is made from four quarks. That is, two quarks and two antiquarks.

“This new sub-atomic particle will mean either the accepted ‘Standard Model’ for the explanation of matter needs to be modified to incorporate new physics, or it could be the first ever discovery of long sought after 4-quark particle. This would be a relief for many as it would confirm the Standard Model,” says Everton.

The Belle discovery was recently confirmed by researchers with the CDF (Collider Detector at Fermilab) experiment at the Fermi National Accelerator Laboratory in Illinois, home of the Tevatron, the world’s largest electron collider.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/articleid_1159.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>