Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists have helped discover a new state of matter that may shed light on the fabric of the universe


The University team of 14 is part of a group of 300 physicists from 13 countries known as the ‘Belle collaboration’. They have discovered a sub-atomic particle that they are having difficulty explaining and difficulty fitting with any current theory that attempts to describe matter.

Their research will be published in Physical Review Letters (in press).

“It could mean some of the standard and accepted theories on matter will need to be modified to incorporate some new physics,” says University of Melbourne doctoral student in physics and Belle team member, Mr Craig Everton.

The sub-atomic particle they believe could be a meson. A meson by itself is a relatively obscure particle, but one which is made up of quarks, the basic building blocks of not just life, but everything that exists in this universe – as we know it.

This ‘mystery meson’ weighs about the same as a single atom of helium (a heavy-weight by sub-atomic particle standards) and exists for only about one billionth of a trillionth of a second before it decays to other longer-lived, more familiar particles.

“This may seem extremely short-lived by any human standard, but it is nearly an eternity for a sub-atomic particle this heavy,” says Everton.

The team discovered their meson, technically known as X(3872), using a giant electron collider, or the High Energy Accelerator Research organisation (KEK) in Tsukuba, Japan.

This particular electron collider is three kilometres in circumference and acts as a meson factory, churning out what are known a ‘B mesons’ that are studied by physicists worldwide.

“We are in the business of studying quarks, as it is thought they hold the key to understanding many of the principle elements of how all matter in the universe (including life) is constructed,” says Everton.

“Mesons have little direct bearing on life itself. They exist because they can,” he says.

“But to study quarks we need to understand mesons, and X(3872) has got the international physics community both baffled and excited.

“Particle physics is now beginning to merge together the disciplines of cosmology and astrophysics and give new perspectives on stuff such as the evolution and construction of the universe and the nature of dark matter.”

A normal meson particle is comprised of a quark and an antiquark that are held together by the ‘color’ force, or ‘strong’ force because it is the most powerful force in nature.

The large variety of meson particles that have been found to date reflect the many different ways that these combinations can be accomplished. The mass and the decay properties of X(3872), however, do not match theoretical expectations for any conceivable quark-antiquark arrangement.

Theoretical physicists around the world are considering a number of potential explanations. These include modifications to the theory of the color force, or the possibility that the X(3872) is the first example to be seen of a new type of meson, one that is made from four quarks. That is, two quarks and two antiquarks.

“This new sub-atomic particle will mean either the accepted ‘Standard Model’ for the explanation of matter needs to be modified to incorporate new physics, or it could be the first ever discovery of long sought after 4-quark particle. This would be a relief for many as it would confirm the Standard Model,” says Everton.

The Belle discovery was recently confirmed by researchers with the CDF (Collider Detector at Fermilab) experiment at the Fermi National Accelerator Laboratory in Illinois, home of the Tevatron, the world’s largest electron collider.

Jason Major | University of Melbourne
Further information:

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>