Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Close Encounter of a Cometary Kind - STARDUST flies through Comet Wild 2


At 19.44 hours GMT on 2nd January NASA’s space probe, STARDUST, successfully flew through Comet Wild 2, collecting interstellar particles and dust on its way. One of the instruments on board, the Dust Flux Monitor Instrument (DFMI), has been built by a team which include space scientists from the Open University.

Since its launch in February 1999, STARDUST has covered 3.2 billion km (2.3 billion miles). It is the first mission designed to bring samples back from a known comet. The study of comets provides a window into the past as they are the best preserved raw materials in the Solar System. The cometary and interstellar dust samples collected will help provide answers to fundamental questions about the origins of the solar system.

Professor Tony McDonnell and Dr Simon Green from the Open University’s Planetary and Space Science Research Institute (PSSRI) are currently at the mission command centre, the Jet Propulsion Laboratory in California, where they are beginning to receive data from their instrument.

Dr Simon Green said: “Early indications show that the encounter with Comet Wild 2 has been successful. The sensors on the DFMI have detected a significant number of impacts. Some of these, as expected, have penetrated the spacecraft dust shield – hopefully this should result in a good number of samples being returned to Earth.”

Professor Tony McDonnell added, “The whole process seems to have gone to plan and we look forward to receiving more data over the next day or so. The telemetry received so far includes an image from the onboard camera, which shows a roughly spherical comet nucleus that was pockmarked with large "sinkholes". Four or five jets of material could be seen bursting from the object.”

At the time of the encounter the 3.3 mile wide comet (5.4 km) sailed past the 5 metre long spacecraft at a distance of 186 miles (240 km) and at a relative speed of 21,960 km per hour (13,650 miles/hour). The tennis racket shaped collector was extended on 24 December in preparation for the encounter. Now that this has taken place a clam like shell will have encased the aerogel collector keeping safe the particles until they return to Earth in January 2006.

“Stardust could provide a new window into the distant past” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed. That protects the material of which they were made from any process of heating, so they haven’t been changed since they were formed, right at the beginning of the formation of the Solar System. So we can have almost a little time capsule of what things were like 4.5 billion years ago."

UK scientists, including a team from the Open University, are also involved with the European Space Agency’s Rosetta Mission which will follow and land on Comet Churyumov-Gerasimenko. This mission is due to be launched on 26th February 2004.

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>