Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close Encounter of a Cometary Kind - STARDUST flies through Comet Wild 2

05.01.2004


At 19.44 hours GMT on 2nd January NASA’s space probe, STARDUST, successfully flew through Comet Wild 2, collecting interstellar particles and dust on its way. One of the instruments on board, the Dust Flux Monitor Instrument (DFMI), has been built by a team which include space scientists from the Open University.



Since its launch in February 1999, STARDUST has covered 3.2 billion km (2.3 billion miles). It is the first mission designed to bring samples back from a known comet. The study of comets provides a window into the past as they are the best preserved raw materials in the Solar System. The cometary and interstellar dust samples collected will help provide answers to fundamental questions about the origins of the solar system.

Professor Tony McDonnell and Dr Simon Green from the Open University’s Planetary and Space Science Research Institute (PSSRI) are currently at the mission command centre, the Jet Propulsion Laboratory in California, where they are beginning to receive data from their instrument.


Dr Simon Green said: “Early indications show that the encounter with Comet Wild 2 has been successful. The sensors on the DFMI have detected a significant number of impacts. Some of these, as expected, have penetrated the spacecraft dust shield – hopefully this should result in a good number of samples being returned to Earth.”

Professor Tony McDonnell added, “The whole process seems to have gone to plan and we look forward to receiving more data over the next day or so. The telemetry received so far includes an image from the onboard camera, which shows a roughly spherical comet nucleus that was pockmarked with large "sinkholes". Four or five jets of material could be seen bursting from the object.”

At the time of the encounter the 3.3 mile wide comet (5.4 km) sailed past the 5 metre long spacecraft at a distance of 186 miles (240 km) and at a relative speed of 21,960 km per hour (13,650 miles/hour). The tennis racket shaped collector was extended on 24 December in preparation for the encounter. Now that this has taken place a clam like shell will have encased the aerogel collector keeping safe the particles until they return to Earth in January 2006.

“Stardust could provide a new window into the distant past” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed. That protects the material of which they were made from any process of heating, so they haven’t been changed since they were formed, right at the beginning of the formation of the Solar System. So we can have almost a little time capsule of what things were like 4.5 billion years ago."

UK scientists, including a team from the Open University, are also involved with the European Space Agency’s Rosetta Mission which will follow and land on Comet Churyumov-Gerasimenko. This mission is due to be launched on 26th February 2004.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>