Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close Encounter of a Cometary Kind - STARDUST flies through Comet Wild 2

05.01.2004


At 19.44 hours GMT on 2nd January NASA’s space probe, STARDUST, successfully flew through Comet Wild 2, collecting interstellar particles and dust on its way. One of the instruments on board, the Dust Flux Monitor Instrument (DFMI), has been built by a team which include space scientists from the Open University.



Since its launch in February 1999, STARDUST has covered 3.2 billion km (2.3 billion miles). It is the first mission designed to bring samples back from a known comet. The study of comets provides a window into the past as they are the best preserved raw materials in the Solar System. The cometary and interstellar dust samples collected will help provide answers to fundamental questions about the origins of the solar system.

Professor Tony McDonnell and Dr Simon Green from the Open University’s Planetary and Space Science Research Institute (PSSRI) are currently at the mission command centre, the Jet Propulsion Laboratory in California, where they are beginning to receive data from their instrument.


Dr Simon Green said: “Early indications show that the encounter with Comet Wild 2 has been successful. The sensors on the DFMI have detected a significant number of impacts. Some of these, as expected, have penetrated the spacecraft dust shield – hopefully this should result in a good number of samples being returned to Earth.”

Professor Tony McDonnell added, “The whole process seems to have gone to plan and we look forward to receiving more data over the next day or so. The telemetry received so far includes an image from the onboard camera, which shows a roughly spherical comet nucleus that was pockmarked with large "sinkholes". Four or five jets of material could be seen bursting from the object.”

At the time of the encounter the 3.3 mile wide comet (5.4 km) sailed past the 5 metre long spacecraft at a distance of 186 miles (240 km) and at a relative speed of 21,960 km per hour (13,650 miles/hour). The tennis racket shaped collector was extended on 24 December in preparation for the encounter. Now that this has taken place a clam like shell will have encased the aerogel collector keeping safe the particles until they return to Earth in January 2006.

“Stardust could provide a new window into the distant past” said Dr Green. “Comets are made of ice and are very cold and have been very cold since they were formed. That protects the material of which they were made from any process of heating, so they haven’t been changed since they were formed, right at the beginning of the formation of the Solar System. So we can have almost a little time capsule of what things were like 4.5 billion years ago."

UK scientists, including a team from the Open University, are also involved with the European Space Agency’s Rosetta Mission which will follow and land on Comet Churyumov-Gerasimenko. This mission is due to be launched on 26th February 2004.

Gill Ormrod | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>