Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Last Cry Of Matter

27.11.2003


‘Black holes’ are truly black. When an object gets within a certain distance from a black hole, it will get swallowed forever with no chance to escape. That includes light, which means that black holes do not shine.



How do astronomers detect black holes if they are unable to see them? Well, to be precise, astronomers do not detect black holes. But they do detect the phenomena that can only be explained by the existence nearby of objects that match the description of black holes!

The strong gravitational attraction of a black hole affects the motion of nearby objects. When astronomers see a star circling around something, but they cannot see what that something is, they may suspect it is a black hole, or a neutron star - the ultra-dense ‘corpse’ of a star.


Astronomers can even infer the mass of a black hole by measuring the mass of the star and its speed. The same kind of calculation can be done whith supermassive black holes that lurk at the centre of many galaxies, including our own galaxy, the Milky Way.

In the Milky Way, observations have revealed the existence of stars and gas moving very fast near the centre, a behaviour that can only be explained if a mass of several million times that of the Sun is at the centre of the galaxy.
Such mass has to be concentrated within a radius of only 10 light-days - roughly 40 times times the distance from the Sun to Pluto - and is most likely to be a black hole.

In fact, at the very centre of our galaxy, radio and X-ray telescopes have detected a powerful source called ‘Sagittarius A’, identified as the candidate to be this massive black hole.
This idea has recently received strong support, with the measurement for the first time of the orbit of a star that approaches this mysterious object to within 17 light-hours - only three times the distance between the Sun and Pluto - while travelling at speeds of than 5000 kilometres per second!

Shining to death

Another piece of evidence in favour of the idea of supermassive black holes in the centre of galaxies is the existence of quasars, discovered in 1967. Quasars are very distant and very luminous at the same time - the most luminous objects in the Universe.

To explain the incredible amount of energy they must release, astronomers also need black holes: just before disappearing into a black hole, the matter being swallowed heats up and emits great amounts of energy - its ‘last cry’. So quasars are believed to be caused by black holes with masses of one million to several billion times the mass of the Sun.

The ‘last cry’ of matter about to be swallowed is best detected with x-ray and gamma-ray telescopes, because the energy released is given off in the form of hard x-rays. In fact, ESA’s orbiting observatories XMM-Newton and Integral have already shown their skills in studying black holes in several discoveries.

For example, XMM Newton has recently discovered a small black hole whirling in our galaxy, in the Ara constellation of the southern sky. Integral has detected what could be the first significant hard x-ray emission from the black hole in the centre of our galaxy.

Guido De Marchi | ESA
Further information:
http://www.esa.int/export/esaSC/SEMPUMXLDMD_index_0.html

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>