Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Last Cry Of Matter

27.11.2003


‘Black holes’ are truly black. When an object gets within a certain distance from a black hole, it will get swallowed forever with no chance to escape. That includes light, which means that black holes do not shine.



How do astronomers detect black holes if they are unable to see them? Well, to be precise, astronomers do not detect black holes. But they do detect the phenomena that can only be explained by the existence nearby of objects that match the description of black holes!

The strong gravitational attraction of a black hole affects the motion of nearby objects. When astronomers see a star circling around something, but they cannot see what that something is, they may suspect it is a black hole, or a neutron star - the ultra-dense ‘corpse’ of a star.


Astronomers can even infer the mass of a black hole by measuring the mass of the star and its speed. The same kind of calculation can be done whith supermassive black holes that lurk at the centre of many galaxies, including our own galaxy, the Milky Way.

In the Milky Way, observations have revealed the existence of stars and gas moving very fast near the centre, a behaviour that can only be explained if a mass of several million times that of the Sun is at the centre of the galaxy.
Such mass has to be concentrated within a radius of only 10 light-days - roughly 40 times times the distance from the Sun to Pluto - and is most likely to be a black hole.

In fact, at the very centre of our galaxy, radio and X-ray telescopes have detected a powerful source called ‘Sagittarius A’, identified as the candidate to be this massive black hole.
This idea has recently received strong support, with the measurement for the first time of the orbit of a star that approaches this mysterious object to within 17 light-hours - only three times the distance between the Sun and Pluto - while travelling at speeds of than 5000 kilometres per second!

Shining to death

Another piece of evidence in favour of the idea of supermassive black holes in the centre of galaxies is the existence of quasars, discovered in 1967. Quasars are very distant and very luminous at the same time - the most luminous objects in the Universe.

To explain the incredible amount of energy they must release, astronomers also need black holes: just before disappearing into a black hole, the matter being swallowed heats up and emits great amounts of energy - its ‘last cry’. So quasars are believed to be caused by black holes with masses of one million to several billion times the mass of the Sun.

The ‘last cry’ of matter about to be swallowed is best detected with x-ray and gamma-ray telescopes, because the energy released is given off in the form of hard x-rays. In fact, ESA’s orbiting observatories XMM-Newton and Integral have already shown their skills in studying black holes in several discoveries.

For example, XMM Newton has recently discovered a small black hole whirling in our galaxy, in the Ara constellation of the southern sky. Integral has detected what could be the first significant hard x-ray emission from the black hole in the centre of our galaxy.

Guido De Marchi | ESA
Further information:
http://www.esa.int/export/esaSC/SEMPUMXLDMD_index_0.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>