Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Let Gravity Assist You...


’Fly-bys’, or ’gravity assist’ manoeuvres, are now a standard part of spaceflight and are used by almost all ESA interplanetary missions.

Imagine if every time you drove by a city, your car mysteriously picked up speed or slowed down. Substitute a spacecraft and a planet for the car and the city, and this is called a ’gravity assist’. These manoeuvres take advantage of the fact that the gravitational attraction of the planets can be used to change the trajectories, or the speed and direction, of our spacecraft on long interplanetary journeys.
As a spacecraft sets off towards its target, it first follows an orbit around the Sun. When the spacecraft approaches another planet, the gravity of that planet takes over, pulling the spacecraft in and altering its speed. The amount by which the spacecraft speeds up or slows down is determined by the direction of approach, whether passing behind or in front of the planet.

When the spacecraft leaves the influence of the planet, it once again follows an orbit around the Sun, but a different one from before, either on course for the original target or heading for another fly-by.

’Slingshot’ effect

The first spacecraft to experience a gravity assist was NASA’s Pioneer 10. In December 1973, it approached a rendezvous with Jupiter, the largest planet in the Solar System, travelling at 9.8 kilometres per second. Following its passage through Jupiter’s gravitational field, it sped off into deep space at 22.4 kilometres a second – like when you let go of a spinning merry-go-round and fly off in one direction. This kind of acceleration is also called the ‘slingshot effect’.

Mission: Impossible?

Even before this encounter, Italian astronomer Giuseppe ‘Bepi’ Colombo had realised the potential of such manoeuvres and had used them to design a ‘Mission: Impossible’ to Mercury, the innermost planet of our Solar System. To reach Mercury, a spacecraft launched from Earth needed to lose more energy than a conventional rocket would allow.

Colombo’s brilliant idea was to realise that gravity assists could also be used to slow a spacecraft. On 10 March 1974, the NASA Mariner 10 spacecraft flew past Venus, lost speed and fell into its rendezvous orbit with Mercury.

Extraordinary manoeuvre

The ESA/NASA Ulysses mission used one of the most extraordinary gravity assists to allow it to see the polar regions of the Sun, places that are forever hidden from any observing location on Earth.

In October 1990, the Ulysses spacecraft left Earth to voyage towards Jupiter. There, it used a gravity assist to throw it out of the plane of the planets into a gigantic loop that passed over the south pole of the Sun in 1994, and then the north pole 13 months later.

More manoeuvres coming up

Also in 2004, ESA’s Huygens probe will arrive at the Saturn’s moon Titan. It is carried on the NASA spacecraft Cassini which used four gravity assists (one with Earth, two with Venus and one with Jupiter) to accelerate it towards Saturn. ESA’s comet-chaser Rosetta will use a similar number of gravity assists to speed it to Comet Churyumov-Gerasimenko.

Over the next eighteen months ESA’s lunar scout SMART-1 will become the first spacecraft to use gravity assists in conjunction with a revolutionary propulsion system, the solar-electric ion engine. This will pave the way for ESA’s Mercury mapper, appropriately called BepiColombo, which will use the same technique to orbit the inner planet early in the next decade.

As well as affecting spacecraft, the gravitational influence of planets also affects the distribution of asteroids and comets. There are families of small bodies, for example the Apollo and the Plutino asteroids, which converges on a particular shape and size of orbit because their members have been repeatedly subjected to small gravitational attractions from the planets.

There are also individual, one-off gravitational effects that can send objects such as comets either plummeting into the inner Solar System or hurtling out beyond the planets. Watching for these ‘wild cards’ is a prime area of study for ESA, as the geological record on Earth shows that asteroids have occasionally collided with our planet in the past.

Monica Talevi | ESA
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>