Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers create new possibilities for biological technology

06.10.2003


A team of researchers at the University of Colorado at Boulder has taken another step in the quest to build a compact, tabletop x-ray microscope that could be used for biological imaging at super-high resolution.



By firing a femtosecond laser - a laser that generates light pulses with durations as short as 100 trillionth of a second - through a gas-filled tube called a waveguide, they were able to create more efficient "laser-like" beams in regions of the spectrum that were previously inaccessible.

The wavelength region over which they generate this "soft" x-ray light efficiently is called the "water-window" region, an important region for biological imaging, according to physics Professor Margaret Murnane. She also is a fellow of JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology.


The water window is an area in the spectrum where water is less absorbing than carbon, which means carbon absorbs more light and thus makes it easier to take images, according to Murnane. Current technology allows researchers to do work in this region, but requires a large-scale and expensive facility.

"With further work, this advance will make it possible to build a compact microscope for biological imaging that fits on a desktop," Murnane said. "Such microscopes could visualize processes happening within living cells, or perhaps even allow scientists to understand how pharmaceuticals function in detail."

A paper on the subject by graduate student Emily Gibson, physics Professor Henry Kapteyn, Murnane, Ariel Paul, Nick Wagner, Ra’anan Tobey, David Gaudiosi and Sterling Backus of the CU-Boulder department of physics and JILA appears in the Oct. 3 issue of the journal Science. Ivan Christov of Sofia University in Bulgaria, Andy Aquila and Eric Gullikson of the Lawrence Berkeley National Laboratory and David Attwood of the University of California at Berkeley and the Lawrence Berkeley National Laboratory also participated in the work.

"We were able to generate more efficient light in the water-window than in the past," said Emily Gibson, the lead author of the paper. "People have been able to generate small amounts of light in the water window with a laser, but our approach using fibers generates the light more efficiently, allowing you to have enough light to do useful things like take images of cells."

To create the "soft" x-ray beams, the research team led by Kapteyn and Murnane fired a laser through a gas-filled hollow tube called a waveguide. The intense laser light literally rips the atoms of the gas apart, creating both ions and electrons, according to Murnane. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, creating "soft" x-ray light in the process, she said.

Unfortunately, some of the waves can be out of phase, canceling each other out and weakening the strength and coherence of the output beam, she said. However, by modulating the diameter of the guide, Murnane said they can arrange for the laser light and "soft" x-ray light to travel at the same speed along the same path, increasing the efficiency of the process.

As a result, a well-synchronized stream of photons fires out of the system, boosted up to a high-energy, "soft" x-ray wavelength. Many of the most important technologies of the 20th century, such as the Internet and MRI imaging, emerged from the use of electromagnetic radiation ranging from radio waves to the visible region of the spectrum, she said. In recent years fiber optics and photonics have revolutionized communications and created a new global society via the Internet.


Additional Contacts:
Margaret Murnane, 303-492-7839
murnane@jila.colorado.edu

Emily Gibson, 303-492-0918
Greg Swenson, 303-492-3113

Henry Kapteyn | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>