Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers create new possibilities for biological technology

06.10.2003


A team of researchers at the University of Colorado at Boulder has taken another step in the quest to build a compact, tabletop x-ray microscope that could be used for biological imaging at super-high resolution.



By firing a femtosecond laser - a laser that generates light pulses with durations as short as 100 trillionth of a second - through a gas-filled tube called a waveguide, they were able to create more efficient "laser-like" beams in regions of the spectrum that were previously inaccessible.

The wavelength region over which they generate this "soft" x-ray light efficiently is called the "water-window" region, an important region for biological imaging, according to physics Professor Margaret Murnane. She also is a fellow of JILA, a joint institute of CU-Boulder and the National Institute of Standards and Technology.


The water window is an area in the spectrum where water is less absorbing than carbon, which means carbon absorbs more light and thus makes it easier to take images, according to Murnane. Current technology allows researchers to do work in this region, but requires a large-scale and expensive facility.

"With further work, this advance will make it possible to build a compact microscope for biological imaging that fits on a desktop," Murnane said. "Such microscopes could visualize processes happening within living cells, or perhaps even allow scientists to understand how pharmaceuticals function in detail."

A paper on the subject by graduate student Emily Gibson, physics Professor Henry Kapteyn, Murnane, Ariel Paul, Nick Wagner, Ra’anan Tobey, David Gaudiosi and Sterling Backus of the CU-Boulder department of physics and JILA appears in the Oct. 3 issue of the journal Science. Ivan Christov of Sofia University in Bulgaria, Andy Aquila and Eric Gullikson of the Lawrence Berkeley National Laboratory and David Attwood of the University of California at Berkeley and the Lawrence Berkeley National Laboratory also participated in the work.

"We were able to generate more efficient light in the water-window than in the past," said Emily Gibson, the lead author of the paper. "People have been able to generate small amounts of light in the water window with a laser, but our approach using fibers generates the light more efficiently, allowing you to have enough light to do useful things like take images of cells."

To create the "soft" x-ray beams, the research team led by Kapteyn and Murnane fired a laser through a gas-filled hollow tube called a waveguide. The intense laser light literally rips the atoms of the gas apart, creating both ions and electrons, according to Murnane. The laser beam then accelerates the electrons to very high energies and slams them back into the ions, creating "soft" x-ray light in the process, she said.

Unfortunately, some of the waves can be out of phase, canceling each other out and weakening the strength and coherence of the output beam, she said. However, by modulating the diameter of the guide, Murnane said they can arrange for the laser light and "soft" x-ray light to travel at the same speed along the same path, increasing the efficiency of the process.

As a result, a well-synchronized stream of photons fires out of the system, boosted up to a high-energy, "soft" x-ray wavelength. Many of the most important technologies of the 20th century, such as the Internet and MRI imaging, emerged from the use of electromagnetic radiation ranging from radio waves to the visible region of the spectrum, she said. In recent years fiber optics and photonics have revolutionized communications and created a new global society via the Internet.


Additional Contacts:
Margaret Murnane, 303-492-7839
murnane@jila.colorado.edu

Emily Gibson, 303-492-0918
Greg Swenson, 303-492-3113

Henry Kapteyn | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>