Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LHC Computing Grid Goes Online


The world’s particle physics community today announced the launch of the first phase of the LHC computing Grid (LCG). The LCG is designed to handle the unprecedented quantities of data that will be produced by experiments at CERN ’s Large Hadron Collider (LHC) from 2007 onwards. "The LCG will provide a vital test-bed for the new Grid computing technologies that are set to revolutionise the way scientists use the world’’s computing resources in areas ranging from fundamental research to medical diagnosis," said Les Robertson, CERN’s LCG project manager.

The computational requirements of the experiments that will operate at the LHC are enormous. Some 12-14 petabytes of data will be generated each year, the equivalent of more than 20 million CDs. Analysing this data will require the equivalent of 70,000 of today’’s fastest PC computers. The LCG will meet these needs by deploying a worldwide computational Grid, integrating the resources of scientific computing centres spread across Europe, America and Asia into a global virtual computing service.

The first phase of the project, LCG-1, will operate a series of prototype services, gradually increasing in scale and complexity as its builders develop an understanding of the functional and operational complexities involved in building a Grid of such unprecedented scale. LCG-1 uses so-called "middleware" developed mainly by the European Data Grid project in Europe and the Globus, Condor and related projects contributing to the Virtual Data Toolkit in the US. It allows physicists to access worldwide distributed computing resources from their desktops as if they were local.

"The Grid enables us to harness the power of scientific computing centres wherever they may be to provide the most powerful computing resource the world has to offer," said Ian Bird, head of Grid deployment at CERN. Fermilab physicist Lothar Bauerdick, project manager of software and computing for USCMS, the collaboration of US scientists working on the CMS experiment at the LHC, stressed the need for collaboration among the world’s developing Grid efforts: "Because of the worldwide reach of the experiments, the LHC provides a great opportunity for the world’s scientists to work together on a common global Grid."

The LCG-1 system determines what resources and data a computing job requires, arranges for the job to run anywhere in the world that can provide those resources, locates and moves the data files required and produced by the job, and eventually returns the results to the physicist.

"LCG-1 is a significant step toward the full-scale computing environment required by the world-wide collaborations of scientists on the LHC," said John Huth, Harvard professor and project manager of software and computing for the collaboration of US scientists working on the ATLAS experiment. Partner institutions at this stage include CERN and major distributed computing facilities coordinated through the University of Prague in the Czech Republic, the IN2P3 Computer Centre in Lyon, France, the Forschungszentrum Karlsruhe in Germany, the KFKI Research Institute for Particle and Nuclear Physics in Budapest, Hungary, the Istituto Nazionale de Fisica Nucleare with its National Computer Centre in Bologna, Italy, the University of Tokyo in Japan, ACC Cyfronet, Cracow, Poland, Moscow State University and the Joint Institute for Nuclear Research in Russia, the Port d’’Informació Científica in Barcelona, Spain, the Academia Sinica in Taiwan, the Particle Physics and Astronomy Research Council (PPARC) and CCLRC Rutherford Appleton Laboratory in the UK. In the US, the Department of Energy (DOE) and the National Science Foundation support participation in LCG-1 through a collaboration of universities and laboratories including the DOE’’s Fermilab and Brookhaven National Laboratories. Together, these institutions provide a truly world-wide service.

"We are very excited about the LCG launch. It is an essential step towards allowing the successful analysis of future LHC data, which are likely to dramatically change our vision of the universe. It is also a major milestone in the development of the new Grid technology, which will bring large benefits to all fields of sciences," said Guy Wormser, IN2P3 Deputy Director and French representative on the LCG Overview Board. "We are therefore very proud to be active partners in this endeavour. Large human and material resources, both in CERN and in France, are committed to this project."

"In a world where a vast amount of digital data is produced every day by all sort of instruments, such as particle physics experiments, digital medical scanners, earth observation satellites, genomic data and digital libraries," said Italian physicist Mirco Mazzucato, head of the INFN-Grid project and Chairman of LCG Grid Deployment Board, ’’the Grid provides the powerful infrastructure that enables the transformation of these millions of Gigabytes into the small pieces of knowledge that allow modern societies to progress."

"We are very excited to be able to participate in such a revolutionary global collaboration," said Dr. Simon C. Lin, Director of the Academia Sinica Computing Centre in Taiwan."We are making direct contributions to LCG as one of its major sites and Grid Operation Centres in Asia. Apart from the Global Grid deployment, we also participate in the development work such as Data Management, Technology Direction, Certification and Testing, as well as Application Software. Based on the experience of LCG, Grid technology will extend to fields like bioinformatics, digital archive and biodiversity informatics, and pave a solid platform for
future research needs."

Ian Halliday, Chief Executive of the Particle Physics and Astronomy Research Council said: "PPARC has strongly supported the LCG project both at CERN and in the United Kingdom. The technology now being deployed for particle physics will ultimately change the way that science and business are undertaken in the years to come. This will have a profound effect on the way society uses information technology, much as the World Wide Web did."

John Gordon, the Deputy Director of CCLRC’’s eScience Centre said: "Rutherford Appleton Laboratory is pleased to be in the vanguard of this Grid. The next step will be to include the other sites already testing the Grid in the UK GridPP and Core grid testbeds so that they can all take an active part in LHC computing."

During the remainder of 2003 LCG-1 will expand to include many computer centres in 16 countries, while maintaining a reliable operational environment. This expansion will integrate the resources needed in 2004 for the first of many analysis data challenges that will test the ability of the Grid to handle the increasingly complex workload of computing and data management required in the build up for LHC.

"The establishment and operation of LCG-1 will provide vital experience and input for other demanding applications in science and industry," said Ian Foster of the US Argonne National Laboratory and the University of Chicago and leader of the Globus Alliance.

Over the next few years, scientists expect the LCG service to form the core of the multi-science grid that will be developed in Europe by the Enabling Grids for E-science and industry in Europe (EGEE) project funded under the 6th Framework Programme of the European Commission. Similarly, in the US, scientists plan the Open Science Grid to provide services for LCG as well as offering opportunities for other demanding applications in science and science education.

Christine Sutton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

More VideoLinks >>>