Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team achieves coldest temperature ever

12.09.2003


MIT scientists have cooled a sodium gas to the lowest temperature ever recorded - only half-a-billionth of a degree above absolute zero. The work, to be reported in the Sept. 12 issue of Science, bests the previous record by a factor of six, and is the first time that a gas was cooled below 1 nanokelvin (one-billionth of a degree).



"To go below one nanokelvin is a little like running a mile under four minutes for the first time," said Nobel laureate Wolfgang Ketterle, co-leader of the team. Ketterle is MIT’s John D. MacArthur Professor of Physics.

"Ultra-low temperature gases could lead to vast improvements in precision measurements by allowing better atomic clocks and sensors for gravity and rotation," said David E. Pritchard, a pioneer in atom optics and atom interferometry and co-leader of the MIT group. He is the Cecil and Ida B. Green Professor of Physics.


The researchers also expect new phenomena to occur at such low temperatures involving, for example, how cold atoms interact with surfaces and how atoms move when they are confined to a narrow channel or layer. These gases form a remarkable state of matter called a quantum fluid, so studying their properties also provides new insights into the basic physics of matter.

At absolute zero (-273 degrees C or -460 degrees F), all atomic motion comes to a standstill since the cooling process has extracted all the particles’ energy. By improving cooling methods, scientists have succeeded in getting closer and closer to absolute zero. At room temperature, atoms move at the speed of a jet airplane. At the new record-low temperature, atoms are a million times slower -- it takes them half a minute to move one inch.

In 1995, a group at the University of Colorado at Boulder and an MIT group led by Ketterle cooled atomic gases to below one microkelvin (one-millionth of a degree above absolute zero). In doing so they discovered a new form of matter, the Bose-Einstein condensate, where the particles march in lockstep instead of flitting around independently. The discovery of Bose-Einstein condensates was recognized with the 2001 Nobel Prize in physics, which Ketterle shared with his Boulder colleagues Eric Cornell and Carl Wieman.

Since this breakthrough, many groups worldwide now routinely reach nanokelvin temperatures; the lowest temperature reported before now was 3 nanokelvin. The new record set by the MIT group is 500 picokelvin, or six times lower.

At such low temperatures, atoms cannot be kept in physical containers, because they would stick to the walls. Furthermore, no known container can be cooled to such temperatures. Therefore, the atoms are surrounded by magnets, which keep the gaseous cloud confined. "In an ordinary container, particles bounce off the walls. In our container, atoms are repelled by magnetic fields," explained physics graduate student Aaron Leanhardt.

For reaching the record-low temperatures, the MIT researchers invented a novel way of confining atoms, which they call a "gravito-magnetic trap." As the name indicates, the magnetic fields act together with gravitational forces to keep the atoms trapped.

All the researchers are affiliated with the MIT Department of Physics, the Research Laboratory of Electronics and the MIT-Harvard Center for Ultracold Atoms (funded by the National Science Foundation).

"It’s exciting to have the low-temperature record at MIT where we have one of the world centers for ultralow-temperature research," said Dan Kleppner, director of the Center for Ultracold Atoms and MIT’s Lester Wolfe Professor of Physics Emeritus.



Ketterle, Leanhardt and Pritchard co-authored the paper with physics graduate students Tom Pasquini and Yong-Il Shin, visiting student Andre Schirotzek, and postdoctoral associates Michele Saba and David Kielpinski. The research was funded by the National Science Foundation, the Office of Naval Research, the Army Research Office and NASA

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>