Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team achieves coldest temperature ever

12.09.2003


MIT scientists have cooled a sodium gas to the lowest temperature ever recorded - only half-a-billionth of a degree above absolute zero. The work, to be reported in the Sept. 12 issue of Science, bests the previous record by a factor of six, and is the first time that a gas was cooled below 1 nanokelvin (one-billionth of a degree).



"To go below one nanokelvin is a little like running a mile under four minutes for the first time," said Nobel laureate Wolfgang Ketterle, co-leader of the team. Ketterle is MIT’s John D. MacArthur Professor of Physics.

"Ultra-low temperature gases could lead to vast improvements in precision measurements by allowing better atomic clocks and sensors for gravity and rotation," said David E. Pritchard, a pioneer in atom optics and atom interferometry and co-leader of the MIT group. He is the Cecil and Ida B. Green Professor of Physics.


The researchers also expect new phenomena to occur at such low temperatures involving, for example, how cold atoms interact with surfaces and how atoms move when they are confined to a narrow channel or layer. These gases form a remarkable state of matter called a quantum fluid, so studying their properties also provides new insights into the basic physics of matter.

At absolute zero (-273 degrees C or -460 degrees F), all atomic motion comes to a standstill since the cooling process has extracted all the particles’ energy. By improving cooling methods, scientists have succeeded in getting closer and closer to absolute zero. At room temperature, atoms move at the speed of a jet airplane. At the new record-low temperature, atoms are a million times slower -- it takes them half a minute to move one inch.

In 1995, a group at the University of Colorado at Boulder and an MIT group led by Ketterle cooled atomic gases to below one microkelvin (one-millionth of a degree above absolute zero). In doing so they discovered a new form of matter, the Bose-Einstein condensate, where the particles march in lockstep instead of flitting around independently. The discovery of Bose-Einstein condensates was recognized with the 2001 Nobel Prize in physics, which Ketterle shared with his Boulder colleagues Eric Cornell and Carl Wieman.

Since this breakthrough, many groups worldwide now routinely reach nanokelvin temperatures; the lowest temperature reported before now was 3 nanokelvin. The new record set by the MIT group is 500 picokelvin, or six times lower.

At such low temperatures, atoms cannot be kept in physical containers, because they would stick to the walls. Furthermore, no known container can be cooled to such temperatures. Therefore, the atoms are surrounded by magnets, which keep the gaseous cloud confined. "In an ordinary container, particles bounce off the walls. In our container, atoms are repelled by magnetic fields," explained physics graduate student Aaron Leanhardt.

For reaching the record-low temperatures, the MIT researchers invented a novel way of confining atoms, which they call a "gravito-magnetic trap." As the name indicates, the magnetic fields act together with gravitational forces to keep the atoms trapped.

All the researchers are affiliated with the MIT Department of Physics, the Research Laboratory of Electronics and the MIT-Harvard Center for Ultracold Atoms (funded by the National Science Foundation).

"It’s exciting to have the low-temperature record at MIT where we have one of the world centers for ultralow-temperature research," said Dan Kleppner, director of the Center for Ultracold Atoms and MIT’s Lester Wolfe Professor of Physics Emeritus.



Ketterle, Leanhardt and Pritchard co-authored the paper with physics graduate students Tom Pasquini and Yong-Il Shin, visiting student Andre Schirotzek, and postdoctoral associates Michele Saba and David Kielpinski. The research was funded by the National Science Foundation, the Office of Naval Research, the Army Research Office and NASA

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>