Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close encounters of another kind?

03.09.2003


The latest discovery of a large asteroid moving through our Solar System puts a spotlight on the studies of these and other wandering celestial objects by the European Space Agency.



Some astronomers have predicted that this newly discovered object could hit the Earth on 21 March, 2014, but now data indicate that the chances of it doing so are really very small - less than one in 909,000.

However, scientists continue to monitor these objects which could give clues to the origins of our Solar System. ESA’s Infrared Space Observatory (ISO) satellite showed that there might be as many as two million asteroids larger than one kilometre in the region of space known as the ’’asteroid belt’’. Gravitational nudges from the planets can push them out of position, causing them to fall towards the Sun, which means that they may cross Earth’s orbit and potentially collide with our world.


The planets of the Solar System were born in a violent storm of asteroid-like objects that began 4.6 thousand million years ago and lasted for roughly 500 million years. The planets failed to consume all of the asteroids and the planetary leftovers are still orbiting the Sun today. Most of them are confined to the ‘main belt’ of asteroids, in between the orbits of Mars and Jupiter.

Ironically, this process, which is thought to have initially assisted in life’s origin by seeding the Earth with precious organic compounds, now threatens it.

There are several impact craters visible on the Earth’s surface, one of them is the Haughton crater in Canada, formed 23 million years ago, but many terrestrial craters are now covered by water or forests, or have been eroded away over thousands of years. There is now compelling evidence that the death of the dinosaurs was accelerated by the impact of an asteroid that struck the Earth in the Yucatán peninsula, off the coast of Mexico.

The Earth is in danger not only from asteroid strikes but also from their icy equivalents, comets. They could wreak havoc if they were to collide with our world. These objects usually live far away beyond even Pluto but can be jolted from their usual orbits by passing stars or gigantic gas clouds.

Comets are considered to be the primitive building blocks of the Solar System, and ESA’s Rosetta comet-chasing mission could help us to understand if life on Earth began with the help of ’’comet seeding’’.

The chances of a comet hitting the Earth are also very small, but the possibility does exist, as shown when Comet Shoemaker-Levy 9 collided with Jupiter in 1994. The NASA/ESA Hubble Space Telescope, as well as Earth-based telescopes around the world, obtained spectacular imagery of this first-ever observed collision between two objects in our Solar System.

Hundreds of small comets are spotted every year, but most are drawn towards the Sun by its large gravitational attraction. They are called ’’sungrazer’’ comets and they burn up completely in the Sun’s hot atmosphere.

The ESA/NASA sun-watching spacecraft SOHO has become the most prolific discoverer of comets in the history of astronomy. With its LASCO coronagraph instrument, originally designed for seeing outbursts from the Sun, SOHO can monitor a large volume of surrounding space, and it is now a vital tool for ESA in the study of comets.

Monica Talevi | alfa
Further information:
http://www.esa.int/export/esaSC/SEMCXLZO4HD_foryou_0.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>