Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From securing stealth to ensuring health

27.06.2003


A material used to protect submarines from sonar detection is the latest technological breakthrough in ensuring the safe and effective dose of ultrasound in medicine. Practitioners and thousands of patients in physiotherapy departments worldwide will benefit from the latest technology, which will ensure a step forward in the reliability of delivered ultrasound treatment.



The material forms a key component in a novel desk-top ultrasound power meter developed by the UK’s national standards laboratory, The National Physical Laboratory (NPL) of Teddington, UK, in partnership with one of the leading manufacturers of ultrasound measurement equipment, Precision Acoustics Ltd (PA), Dorchester, UK.

An estimated 10,000 physiotherapy ultrasound units are currently in use in the UK alone. Key to ensuring that patients are receiving the most effective treatment for their soft tissue injuries is the assurance that the equipment delivers the correct level of ultrasound power. Physiotherapists will benefit from the latest measurement development to carry out their everyday treatments.


Maintaining accuracy of these devices is crucial to safety of patient treatment in both private and public sectors. Currently, the only way to guarantee the outputs of the physiotherapy devices is through costly measurement equipment retailing at around £1,500 to £2,500 and which are only suitable for use by trained hospital physicists

The new power meter provides the /answer in a matter of seconds. Compact and easy-to-use, the new device, which retails at under £400 (excl VAT), is smaller than an average shoe-box and will enable physiotherapists to conduct their own health-checks on ultrasound equipment each time they use it.

By simply placing the treatment head - the part of the physiotherapy equipment, which is applied to the patient’s body - in the water-filled well in the top of the device, the practitioner can check instantly that the equipment is delivering the right amount of power. The patient can be sure that they are receiving the best and most effective treatment.

“Until now, the only methods for checking equipment, have been too complex and costly for application at user level, either in the NHS or in private practice. The power meter was developed in response to demand for a cheaper and more user-friendly measuring system than those currently available. It is a good example of NPL partnering the instrumentation sector to deliver innovative measurement technologies” says Dr Bajram Zeqiri, Head of the Medical and Industrial Ultrasound Group at NPL.

The low cost and user-friendliness of the power meter makes it a very attractive alternative to the systems currently in use. Terri Gill, Managing Director of PAL. said,
“Once the device reaches the market, we anticipate a huge demand and with larger scale production to meet this demand, we expect the costs will eventually be even lower. Together with NPL , we are now looking into the feasibility of integrating the new system into future design for physiotherapy ultrasound equipment. Some manufacturers have already expressed interest.”

Scientists at NPL and PAL are very excited about the new technology as it looks to be flexible, offering the potential for application in a whole range of future measuring devices, from inexpensive, lower-accuracy devices such as the newly developed ultrasonic power meter, to more sophisticated meters which might replace traditional radiation force measuring devices. Dr Zeqiri adds, “The method looks to be fairly sensitive which means it might be developed to detect low ultrasonic powers, perhaps even down to a few mW or so.”

Key to the simplicity, efficiency and low cost of the power meter are the principles and materials used in its construction.

To address the problem of cost, NPL needed to find an alternative to conventional methods of measuring radiation force as a means of verifying the accuracy of ultrasound equipment. Conventional measuring devices (radiation forcebalances ) offer a highly accurate measurement of power output (to between ±7% and ±10% - well within the ±20% specified standard for physiotherapy ultrasound equipment), but are cumbersome, and costly to manufacture. More importantly, physiotherapists are not trained in the use of such equipment and have to rely on the availability of medical physicists to carry out the tests. Equipment is time-consuming to set up and, taking at least 15 minutes to carry out the check. This represents an ineffective use of practitioners’ time.

Working in partnership with PAL, NPL looked into the viability of using solid-state principles - rather than radiation force measurement - to achieve a measuring system. Using the known pyroelectric properties of polyvinylidene fluoride (pvdf) and the specially designed polyurethane rubber material, the team came up with a device which is not only considerably cheaper to produce, but which has the added advantage of being portable and extremely simple to use.

The power meter consists of a plastic cup-shaped vessel approximately 100mm in outside diameter and 40mm deep, the upper chamber of which is filled with tap water. A thin membrane of pvdf, only tens of microns thick, is stretched across the upper chamber of the vessel. This membrane is backed with a polyurethane rubber derived from a material originally developed for use as anti sonar-detection or ‘stealth’ coatings on submarines. At the frequencies of interest, this unique material acts as an acoustical absorber capable of absorbing more than 80% of the ultrasonic power within 1mm of the front surface of the absorber. Pic/diag here?. The acoustic energy produced by the treatment head is absorbed within the top surface of the rubber, resulting in a rapid increase of temperature of both the absorber surface and the adjacent pvdf film. Due to the pyroelectric response of the polymer film a voltage is simultaneously generated across the electrodes of the pvdf. The electronic circuitry which captures the largest voltage generated by the thin film, as a measure of the generated power, is neatly encased in the lower chamber of the vessel.

Noor Kheir | alfa
Further information:
http://www.powermeter.co.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>