Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI search for water on Mars set for June 2 launch

04.06.2003


NASA-funded project to search for underground water on Mars



University of Iowa professor and space physicist Don Gurnett is hoping to receive an uplifting word from western Asia on Monday.

That’s because Gurnett heads a $7 million, NASA-funded project to search for underground water on Mars, a project whose radar instrument is aboard the European Space Agency’s (ESA) Mars Express spacecraft using a Soyuz rocket and scheduled for launch at 12:45 p.m. CDT Monday, June 2 from Baikonur, Kazakhstan.


Called MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding), the joint Italian-U.S. project includes the University of Rome and NASA’s Jet Propulsion Laboratory and Co-Investigator Gurnett at the University of Iowa.

Gurnett and his UI colleagues Rich Huff, Don Kirchner and Jim Phillips developed the 130-foot-long antenna and related electrical instruments that the Mars-orbiting spacecraft will use to probe several miles beneath the planet’s surface, as well as study the ionosphere in the Martian skies. Rockwell Collins of Cedar Rapids designed the radio transmitter, which is coupled to the antennas. The entire MARSIS instrument weighs 12 kilograms, or about 26 pounds. The UI radar package is one of eight instruments aboard the craft, scheduled to arrive at Mars in late December.

Gurnett says that the project offers an excellent opportunity to learn what happened to the water that most scientists believe was responsible for shaping the planet’s deep canyons, some of which are longer and deeper than the Grand Canyon. Because the planet’s atmospheric pressure is extremely low, liquid water would have long ago evaporated from the surface. Results gathered by Mars Global Surveyor suggest that water may exist below the surface. Water may exist just below the surface in the form of permafrost and, farther down, as a liquid due to radioactive heating from the interior of the planet.

"Our objective is to use a low-frequency radar to penetrate the Martian surface to a depth of five kilometers -- about three miles," he says. "As the radar signal penetrates into the permafrost, we should be able to detect a strong radar reflection from the ice-water interface. The hope is that we’ll be able to detect the interface and tell how much water is there." Other radar echoes should reveal boundaries between different kinds of geologic materials, such as layers of lava, sheets of sand, sediments, debris from impacts, and ice-rich rock and soils.

The other part of the project involves examining the Martian ionosphere, the electrically charged layer of the upper atmosphere that on Earth reflects radio signals back to the ground, sometimes hundreds of miles from their point of origin. Researchers will bounce radar signals off of the ionosphere and measure the time delay of the signals to learn the shape and height of the ionosphere.

Gurnett’s UI research team for many years has specialized in the construction of low-frequency, space-borne radio systems. Unlike the much-higher frequency radars normally used by airplanes and spacecraft to map surface features, the low-frequency radar provided by the UI team will penetrate deep beneath subsurface rocks and permafrost on Mars. The UI team has provided low-frequency radio antennas and receivers for numerous spacecraft, including Cassini, scheduled to arrive at Saturn in 2004.

Gurnett, a member of the National Academy of Sciences, is a veteran of more than 25 major spacecraft projects, including the Voyager 1 and Voyager 2 flights to the outer planets, the Galileo mission to Jupiter, and the Cassini mission to Saturn. He made the first observations of plasma waves and low-frequency radio emissions in the magnetospheres of Jupiter, Saturn, Uranus and Neptune and discovered lightning in the atmospheres of Jupiter and Neptune. Gurnett and his UI colleagues have over 120 years of spacecraft instrument design and construction between them.


STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 301, Iowa City, Iowa 52242-2500.

MEDIA CONTACTS: Gary Galluzzo, Writer, 319-384-0009, mailto:gary-galluzzo@uiowa.edu; Franco Bonacina, European Space Agency, 33-1-5369-7713

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>