Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI search for water on Mars set for June 2 launch

04.06.2003


NASA-funded project to search for underground water on Mars



University of Iowa professor and space physicist Don Gurnett is hoping to receive an uplifting word from western Asia on Monday.

That’s because Gurnett heads a $7 million, NASA-funded project to search for underground water on Mars, a project whose radar instrument is aboard the European Space Agency’s (ESA) Mars Express spacecraft using a Soyuz rocket and scheduled for launch at 12:45 p.m. CDT Monday, June 2 from Baikonur, Kazakhstan.


Called MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding), the joint Italian-U.S. project includes the University of Rome and NASA’s Jet Propulsion Laboratory and Co-Investigator Gurnett at the University of Iowa.

Gurnett and his UI colleagues Rich Huff, Don Kirchner and Jim Phillips developed the 130-foot-long antenna and related electrical instruments that the Mars-orbiting spacecraft will use to probe several miles beneath the planet’s surface, as well as study the ionosphere in the Martian skies. Rockwell Collins of Cedar Rapids designed the radio transmitter, which is coupled to the antennas. The entire MARSIS instrument weighs 12 kilograms, or about 26 pounds. The UI radar package is one of eight instruments aboard the craft, scheduled to arrive at Mars in late December.

Gurnett says that the project offers an excellent opportunity to learn what happened to the water that most scientists believe was responsible for shaping the planet’s deep canyons, some of which are longer and deeper than the Grand Canyon. Because the planet’s atmospheric pressure is extremely low, liquid water would have long ago evaporated from the surface. Results gathered by Mars Global Surveyor suggest that water may exist below the surface. Water may exist just below the surface in the form of permafrost and, farther down, as a liquid due to radioactive heating from the interior of the planet.

"Our objective is to use a low-frequency radar to penetrate the Martian surface to a depth of five kilometers -- about three miles," he says. "As the radar signal penetrates into the permafrost, we should be able to detect a strong radar reflection from the ice-water interface. The hope is that we’ll be able to detect the interface and tell how much water is there." Other radar echoes should reveal boundaries between different kinds of geologic materials, such as layers of lava, sheets of sand, sediments, debris from impacts, and ice-rich rock and soils.

The other part of the project involves examining the Martian ionosphere, the electrically charged layer of the upper atmosphere that on Earth reflects radio signals back to the ground, sometimes hundreds of miles from their point of origin. Researchers will bounce radar signals off of the ionosphere and measure the time delay of the signals to learn the shape and height of the ionosphere.

Gurnett’s UI research team for many years has specialized in the construction of low-frequency, space-borne radio systems. Unlike the much-higher frequency radars normally used by airplanes and spacecraft to map surface features, the low-frequency radar provided by the UI team will penetrate deep beneath subsurface rocks and permafrost on Mars. The UI team has provided low-frequency radio antennas and receivers for numerous spacecraft, including Cassini, scheduled to arrive at Saturn in 2004.

Gurnett, a member of the National Academy of Sciences, is a veteran of more than 25 major spacecraft projects, including the Voyager 1 and Voyager 2 flights to the outer planets, the Galileo mission to Jupiter, and the Cassini mission to Saturn. He made the first observations of plasma waves and low-frequency radio emissions in the magnetospheres of Jupiter, Saturn, Uranus and Neptune and discovered lightning in the atmospheres of Jupiter and Neptune. Gurnett and his UI colleagues have over 120 years of spacecraft instrument design and construction between them.


STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 301, Iowa City, Iowa 52242-2500.

MEDIA CONTACTS: Gary Galluzzo, Writer, 319-384-0009, mailto:gary-galluzzo@uiowa.edu; Franco Bonacina, European Space Agency, 33-1-5369-7713

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>