Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny galaxies once roared in the universe, say scientists

26.05.2003


Astronomers led by the University of Colorado and Carnegie Observatories have shown that a miniature galaxy less than one-hundredth the size of the Milky Way is ejecting large quantities of gas and energy into huge regions of intergalactic space.



“This discovery suggests tiny galaxies that appear very faint and dormant today were once much brighter and more active,” said CU-Boulder graduate student Brian Keeney. “It also indicates similar galaxy systems may have been primarily responsible for the chemical evolution of the universe in the very early stages of galaxy evolution,” said Keeney, who presented the results of the research at the American Astronomical Society Meeting held in Nashville, Tenn., May 25 through May 29.

CU-Boulder teamed up with the Carnegie Institution in Washington, D.C., and East Tennessee State University using the Hubble Space Telescope and ground-based telescopes to make a series of observations. Ray Weymann of the Carnegie Institution led a team that used the electromagnetic spectrum from the brightest quasar in the sky, 3C273, to discover a dense cloud of gas in the far reaches of intergalactic space.


Subsequent observations of the cloud showed it contained elements formed in stars and ejected into space by supernova explosions, he said. There was no known source nearby that could have contributed the ancient elements to this gas.

After several years of searching for the source of this intergalactic “pollution”, a team led by CU-Boulder Professor John Stocke and Weymann discovered a tiny “dwarf galaxy” so small that it had been previously overlooked.

Better images and a detailed spectral analysis obtained by Stocke and Keeney at the Apache Point 3.5-meter Telescope in New Mexico showed strong evidence that this tiny galaxy was responsible for forming the gas cloud.

Some of the strongest evidence is the abundance of elements in the gas cloud and of the stars in the galaxy match, Keeney said.

In addition, an unusual “overabundance” of the element silicon in the gas cloud suggests that thousands of supernovas -- the type created when massive stars die --were the source of the gas cloud. A spectral analysis of the dwarf galaxy by Stocke and Keeney showed the dwarf galaxy probably experienced a massive “burst” of star formation some 2 billion to 3 billion years ago, and the ejected gas cloud has since traveled 250,000 light-years to to the location where it is today.

The event may have created thousands of supernovas of the type that create the overabundance of silicon, said Keeney. “Two to three billion years is plenty of time for stars in the ‘starburst galaxy’ to die and create supernovas, and for the gas to reach its current location between us and 3C273.

“Because the large numbers of supernovas made by the dwarf’s starburst blew all of the gas into the surrounding intergalactic space, there likely will be no further star formation in the galaxy,” Keeney said. Theoretical models predict the dwarf galaxy will continue to fade to only about 10 percent of its current brightness. After another few billion years, the dwarf is expected to be so faint that it will be comparable to the smallest and faintest galaxies, known as “dwarf spheroidals.”

Not only are these small objects the most numerous of all galaxy types today, but there also may have been a much larger number of them in the past, said Stocke. Current theories of galaxy formation suggest in the early history of the universe, all stars were formed in tiny galaxies like this one, most of which then merged together and became incorporated into larger galaxies.

“So our own Milky Way probably was created by mergers of smaller galaxies like this one,” said Keeney. “If this is correct, and if all dwarf spheroidals went through an active starburst phase, a large portion of intergalactic space could have been enriched with gas without any help from more massive galaxies like the Milky Way.

“They may be tiny,” Keeney said, “but they are so numerous that their collective effects may be more important in the chemical evolution of the universe than much larger galaxies like our own.”

Project team members include Keeney, Stocke and Kevin McLin of CU-Boulder’s astrophysical and planetary sciences department, Weymann of the Carnegie Institution and Professor Mark Giroux of East Tennessee State University.

Additional observations were made with the Carnegie Institution’s Las Campanas 2.6-meter telescope in Chile and the Wiyna 3.5-meter telescope at Kitt Peak, Ariz.

Brian Keeney | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>