Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is a metal not a metal?

23.05.2003


Niobium clusters display non-metallic properties at ultra-cold temperatures



The May 23 issue of the journal Science answers that question with an account of the surprising behavior exhibited by nanometer-scale clusters of the metal niobium. When the clusters are cooled to below 20 degrees Kelvin, electrical charges in them suddenly shift, creating structures known as dipoles.

"This is very strange, because no metal is supposed to be able to do this," said Walter de Heer, a professor in the School of Physics at the Georgia Institute of Technology and co-author of a paper to be published on the topic in Science. "These clusters become spontaneously polarized, with electrons moving to one side of the cluster for no apparent reason. One side of each cluster becomes negatively-charged, and the other side becomes positively-charged. The clusters lock into that behavior and stay that way."


This ferroelectric phenomenon has so far been observed in clusters of niobium, vanadium and tantalum – three transition metals that in bulk form become superconducting at about the same temperature that the researchers observe formation of dipoles in the tiny clusters. De Heer believes this discovery will open up a new field of research – and provide clues to the mystery of superconductivity.

In bulk metals – and even in niobium clusters at room temperature -- electrical charge is normally distributed equally throughout the sample unless an electric field is applied to them. But in the clusters of up to 200 niobium atoms created by de Heer and collaborators Ramiro Moro, Xiaoshan Xu and Shuangye Yin, that changes when the particles are cooled to less than 20 degrees Kelvin.

The Georgia Tech researchers discovered this "spontaneous symmetry breaking" while searching for signs of superconductivity in the nanometer-scale clusters. It was completely unexpected – and de Heer admits he has no explanation for it.

"When this happens, these particles that are made out of metal atoms no longer behave as if they were metallic," he said. "Something changes the particles from a metal into something else."

For the smallest clusters, the strength of the dipole effect varies dramatically according to size. Clusters composed of 14 atoms display strong effects, while those made up of 15 atoms show little effect. Above 30 atoms, clusters with even numbers of atoms display stronger dipole effects than clusters with odd numbers of atoms.

"Structure matters greatly to this process," de Heer said. "A small change can affect the position of the phase transition rather profoundly, and the exact arrangement of atoms really does matter to these systems."

He attributes the size sensitivity to the quantum size regime, which is related to restrictions on how electrons can move in very small clusters.

De Heer sees strong "circumstantial evidence," but no solid proof, that the phenomenon is connected to superconductivity in these metals.

"Our assumption is that superconductivity in the bulk materials has something to do with the spontaneous production of dipole in the small particles," he said. "At this point, it is circumstantial evidence – the same materials and the same temperature regime, and the odd phase transitions occurring in both. By studying several different metals, we found that those that are superconducting in bulk have this effect, and those that are not superconducting do not have it. That strengthens our belief that this is connected to superconductivity in some way that we don’t yet understand."

To produce and study the tiny clusters, the researchers use a custom-built apparatus that includes a laser, large vacuum chamber, liquid helium and a specially designed detector able to count and characterize several million particles per hour.

First, a laser beam is aimed at a niobium rod held within the vacuum chamber. Pulses from the laser vaporize the niobium, creating a cloud of metallic vapor. A stream of very cold helium gas is then injected into the chamber, causing the niobium gas to condense into particles of varying sizes. Under pressure from the ultra-cold helium, the particles exit through a small hole in the chamber’s wall, creating a one millimeter-wide jet of particles that passes between two metal plates before hitting the detector.

At intervals one minute apart, the metal plates are energized with 15,000 volts, creating a strong electrical field. The field interacts with the polarized niobium nanoclusters, causing them to be deflected away from the detector. Unpolarized clusters remain in the beam and are counted by the detector

By comparing detector readings while the plates are energized against the readings when no field is applied, the researchers learn which clusters carry the dipole. The continuous production of particles allows de Heer’s research team to gather data on millions of particles during each experiment. By varying the temperature and voltage, they study the impact of these changes on the effect.

So far, they have studied in detail clusters of up to 200 atoms, though de Heer believes the effect should continue in larger clusters, perhaps up to 500 atoms or as many as 1,000.

"This is just the beginning of what will ultimately be a very exciting story," he said. "We certainly have a lot of work to do.



Technical contact: Walter de Heer (404-894-7879); E-mail: (deheer@electra.physics.gatech.edu)

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>