Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Smallest Sight: Researchers Zoom In on the Nanoscale

04.03.2003


Researchers at the University of Rochester have created the highest resolution optical image ever, revealing structures as small as carbon nanotubes just a few billionths of an inch across. The new method should open the door to previously inaccessible chemical and structural information in samples as small as the proteins embedded in a cell’s membrane. The research appears in today’s issue of Physical Review Letters.



"This is the highest resolution optical spectroscopic measurement ever made," says Lukas Novotny, professor of optics. "There are other methods that can see smaller structures, but none use light, which is rich in information. With this technique we have a detailed spectrum for every point on a surface."

Since light is so rife with information (everything we know about the deep universe comes from teasing information from a tiny amount of light), Novotny and his colleague, visiting professor Achim Hartschuh, can determine what a piece of material is made of as well as its structure. Is the string of carbon rolled into a tube or just a string of atoms? Is a protein made of expected molecules and properly folded to be an effective medicine? And what could be the most rewarding result of the research-detecting properties of such small structures that were unknown before. Novotny and his team are also eager to learn if certain structures exhibit unknown characteristics, such as when carbon nanotubes, for instance, cross or interconnect.


The ultimate vision for the Raman microscopy project, however, is to refine the process to a point where it might revolutionize biology. "Identifying individual proteins right on the cell’s membrane has been the goal of this project from the start," says Hartschuh. Garnering the cornucopia of information light provides from the proteins on a membrane would mean scientists could understand exactly how a cell’s membrane works, opening the door to designer medicines that could kill harmful cells, repair damaged cells, or even identify never-before-seen strains of disease.

The Rochester team’s technique, called near-field Raman microscopy, illuminates the nano-sized structures with light, allowing researchers to glean far more information than any other technique. Other ultra-high resolution imaging techniques, such as atomic force microscopes, only detect the presence of objects, they don’t "see" them. Though researchers have longed wished to use light at such magnification, the laws of physics make this extremely difficult. Light travels in waves, and if an object like a nanotube or a protein is much smaller than that wavelength, it’s like trying to pick up a poppy seed with a fork-the poppy seed falls between the tines. Some efforts have been made to force light to shorter wavelengths and through tiny apertures, but these methods have their own built-in limitations, including damage to the aperture itself.

Novotny and Hartschuh sharpen a gold wire to a point just a few billionths of an inch across. A laser then shines against the side of the gold tip, inciting electrons inside it to oscillate. These oscillations create a tiny bubble of electromagnetic energy at the tip, which interacts with the vibrations of the atoms in the sample. This interaction, called Raman scattering, releases packets of light from the sample at specific frequencies that can be detected and used to identify the chemical composition of the material.

In about two years, Novotny and Hartschuh think they will be able to refine the system, already with a resolution of 20 nanometers (billionths of a meter), so that they can image proteins, which are only 5 to 20 nanometers wide. To do that they will try to get the point of the gold tip sharper still, or even experiment with different shaped points. Then the trick will be keeping the tip "alive," meaning using it without incurring the least damaging bump or scrape-a difficult task when hovering only a few nanometers above the scanned sample. If all goes well, the research team may try to push the technology even further to derive first-ever optical images of smaller molecules.

The research was supported by a grant from the National Science Foundation.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/pr/News/NewsReleases/scitech/novotny-nearfield.html

More articles from Physics and Astronomy:

nachricht Australian technology installed on world’s largest single-dish radio telescope
26.09.2016 | International Centre for Radio Astronomy Research (ICRAR)

nachricht How to merge two black holes in a simple way
26.09.2016 | Plataforma SINC

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>