Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Michigan researchers achieve quantum entanglement of three electrons

27.02.2003


The quantum entanglement of three electrons, using an ultrafast optical pulse and a quantum well of a magnetic semiconductor material, has been demonstrated in a laboratory at the University of Michigan, marking another step toward the realization of a practical quantum computer. While several experiments in recent years have succeeded in entangling pairs of particles, few researchers have managed to correlate three or more particles in a predictable fashion.



The results were presented in an article on Nature Materials’ web site on February 23 and will appear in the March 4 issue of Nature Materials, titled "Optically induced multispin entanglement in a semiconductor quantum well." Authors of the paper are Jiming Bao, Andrea V. Bragas, Jacek K. Furdyna (University of Notre Dame), and Roberto Merlin.

Entanglement, which is essential to the creation of a quantum computer, is one of the mysterious properties of quantum mechanics that contradicts the notions of classical realism. Quantum computers will be able to perform highly complex tasks that would be impossible for a classical computer, at great speed.


Briefly, entanglement describes a particular state of a set of particles of energy or matter for which correlations exist, so that the particles affect each other regardless of how far apart they are. Einstein called it "spooky action at a distance." We know that we must be able to harness entanglement in order to develop the quantum gates necessary for storing and processing information in practical quantum computers. These devices will offer enormously enhanced computing power that would permit extremely fast ways to solve certain mathematical problems, such as the factorization of large numbers.

The Michigan team, which has been working on the problem for several years, used ultrafast (50-100 femtosecond) laser pulses and coherent techniques to create and control spin-entangled states in a set of non-interacting electrons bound to donors in a CdTe quantum well. The method, which relies on the exchange interaction between localized excitons and paramagnetic impurities, could in principle be used to entangle an arbitrarily large number of spins.

In the presence of an external magnetic field, a resonant laser pulse creates localized excitons (bound electron-hole pairs) of radius ~ 0.005 microns in the CdTe well. Electrons bound to donor impurities within that radius feel the presence of the exciton in such a way that they became entangled after the exciton is gone. The process involves resonant Raman transitions between Zeeman split spin states. In the experiments, the signature of entanglement involving m electrons is the detection of the mth-harmonic of the fundamental Zeeman frequency in the differential reflectivity data.

"The community is trying various approaches to achieve controllable interactions between qubits. We’ve seen a variety of proposed solutions from atomic physicists involving trapped ions and atoms and even ’flying qubits’ based on light," said Merlin. "Solutions based on semiconductor technology, like ours for example, may well hold more promise for practical implementation when combined with advances in nanotechnology."

The experiments have so far involved a large ensemble of sets of 3 electrons. "Our procedure is potentially set-specific and scalable, which means that it shows definite promise for quantum computing applications," Merlin said. Cryptography is expected to be one of the first such applications.

The research was conducted at OPIL (Optical Physics Interdisciplinary Laboratory), a laboratory of the FOCUS (Frontiers in Optical Coherent and Ultrafast Science) Center of the University of Michigan and funded by ACS Petroleum Research Fund, NSF (National Science Foundation) and the AFOSR (Air Force Office of Scientific Research) through the MURI (Multidisciplinary University Research Initiative) program.

To read the entire paper, go to http://dx.doi.org/10.1038/Nmat839 or send an email to merlin@umich.edu. For more information about the University of Michigan’s FOCUS Center, see http://www.umich.edu/~focuspfc/main.html.



Contact: Judy Steeh
Phone: 734-647-3099
E-mail: jsteeh@umich.edu


The University of Michigan
News Service
412 Maynard
Ann Arbor, MI 48109-1399

Judy Steeh | EurekAlert!
Further information:
http://www.umich.edu/~newsinfo
http://www.umich.edu/news
http://www.umich.edu/~focuspfc/main.html

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>