Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Pole telescope follows trail of neutrinos into deepest reaches of the universe

28.01.2003


Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events


Photo credit: The University of Wisconsin



A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.

An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is capable of tracking high-energy neutrinos — elusive subatomic particles — to their sources, which are emitted by these signature events. Their findings will be published in the Feb. 1. 2003, issue of the Astrophysical Journal.


"We now have a powerful new tool to scan the heavens," said Steven Barwick, a UCI physicist and corresponding author on the report. "This marks a significant breakthrough in the field of high-energy neutrino astronomy. AMANDA does what it was designed to do. Of all the high-energy particles emitted from the violent, energetic events in the universe, only neutrinos can directly provide information on these activities."

Neutrinos are invisible, uncharged, nearly massless particles that, unlike other kinds of radiation, speed through the universe unhindered by planets, stars, magnetic fields or entire galaxies. The particles are emitted by phenomena scientists believe can help them understand the origins of the universe.

Using the AMANDA detector — a massive, 400-meter tall structure consisting of 308 optical sensors each the size of a bowling ball — the physicists examined a previously unexplored region of the sky. They calculated that AMANDA could measure the direction of neutrinos within 3.5 degrees, which is accurate enough to reveal sources of high-energy neutrinos. They also determined that an improved version of the detector, AMANDA-II, which has been operational since January 2000, can provide as much as 10 times more information on the emission sources of these neutrinos.

First operational in 1997, the Antarctic Muon and Neutrino Detector Array (AMANDA) facility was established to study the high-energy form of neutrinos, which has 10,000 times more energy than that of low-energy neutrinos emitted by the sun. Buried more than one-and-a-half kilometers beneath the South Pole, the National Science Foundation-funded AMANDA telescope is pointed into the ground instead of up at the sky, so the Earth can act as a filter for other forms of radiation. This means despite its location in the South Pole, the "eye" of the telescope is actually the northern skies.

Along with Barwick, other UCI researchers contributing to the AMANDA project are Lisa Gerhardt, Kyler Kuehn, John Kim, Pat Mock, David Ross, Wenqing Wu, Gaurang Yodh and Scott Young. Overall, 105 scientists from 20 universities and institutes in the United States, Europe and South America collaborate on AMANDA research. Their work is supported by a variety of international sources, including the U.S. National Science Foundation, the U.S. Department of Energy, and the UCI AENEAS Supercomputer Facility.

Tom Vasich
(949) 824-6455
tmvasich@uci.edu

Tom Vasich | UCI
Further information:
http://amanda.uci.edu/
http://today.uci.edu/news/release_detail.asp?key=970

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>