Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Pole telescope follows trail of neutrinos into deepest reaches of the universe

28.01.2003


Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events


Photo credit: The University of Wisconsin



A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.

An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is capable of tracking high-energy neutrinos — elusive subatomic particles — to their sources, which are emitted by these signature events. Their findings will be published in the Feb. 1. 2003, issue of the Astrophysical Journal.


"We now have a powerful new tool to scan the heavens," said Steven Barwick, a UCI physicist and corresponding author on the report. "This marks a significant breakthrough in the field of high-energy neutrino astronomy. AMANDA does what it was designed to do. Of all the high-energy particles emitted from the violent, energetic events in the universe, only neutrinos can directly provide information on these activities."

Neutrinos are invisible, uncharged, nearly massless particles that, unlike other kinds of radiation, speed through the universe unhindered by planets, stars, magnetic fields or entire galaxies. The particles are emitted by phenomena scientists believe can help them understand the origins of the universe.

Using the AMANDA detector — a massive, 400-meter tall structure consisting of 308 optical sensors each the size of a bowling ball — the physicists examined a previously unexplored region of the sky. They calculated that AMANDA could measure the direction of neutrinos within 3.5 degrees, which is accurate enough to reveal sources of high-energy neutrinos. They also determined that an improved version of the detector, AMANDA-II, which has been operational since January 2000, can provide as much as 10 times more information on the emission sources of these neutrinos.

First operational in 1997, the Antarctic Muon and Neutrino Detector Array (AMANDA) facility was established to study the high-energy form of neutrinos, which has 10,000 times more energy than that of low-energy neutrinos emitted by the sun. Buried more than one-and-a-half kilometers beneath the South Pole, the National Science Foundation-funded AMANDA telescope is pointed into the ground instead of up at the sky, so the Earth can act as a filter for other forms of radiation. This means despite its location in the South Pole, the "eye" of the telescope is actually the northern skies.

Along with Barwick, other UCI researchers contributing to the AMANDA project are Lisa Gerhardt, Kyler Kuehn, John Kim, Pat Mock, David Ross, Wenqing Wu, Gaurang Yodh and Scott Young. Overall, 105 scientists from 20 universities and institutes in the United States, Europe and South America collaborate on AMANDA research. Their work is supported by a variety of international sources, including the U.S. National Science Foundation, the U.S. Department of Energy, and the UCI AENEAS Supercomputer Facility.

Tom Vasich
(949) 824-6455
tmvasich@uci.edu

Tom Vasich | UCI
Further information:
http://amanda.uci.edu/
http://today.uci.edu/news/release_detail.asp?key=970

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>