Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


South Pole telescope follows trail of neutrinos into deepest reaches of the universe


Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events

Photo credit: The University of Wisconsin

A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.

An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is capable of tracking high-energy neutrinos — elusive subatomic particles — to their sources, which are emitted by these signature events. Their findings will be published in the Feb. 1. 2003, issue of the Astrophysical Journal.

"We now have a powerful new tool to scan the heavens," said Steven Barwick, a UCI physicist and corresponding author on the report. "This marks a significant breakthrough in the field of high-energy neutrino astronomy. AMANDA does what it was designed to do. Of all the high-energy particles emitted from the violent, energetic events in the universe, only neutrinos can directly provide information on these activities."

Neutrinos are invisible, uncharged, nearly massless particles that, unlike other kinds of radiation, speed through the universe unhindered by planets, stars, magnetic fields or entire galaxies. The particles are emitted by phenomena scientists believe can help them understand the origins of the universe.

Using the AMANDA detector — a massive, 400-meter tall structure consisting of 308 optical sensors each the size of a bowling ball — the physicists examined a previously unexplored region of the sky. They calculated that AMANDA could measure the direction of neutrinos within 3.5 degrees, which is accurate enough to reveal sources of high-energy neutrinos. They also determined that an improved version of the detector, AMANDA-II, which has been operational since January 2000, can provide as much as 10 times more information on the emission sources of these neutrinos.

First operational in 1997, the Antarctic Muon and Neutrino Detector Array (AMANDA) facility was established to study the high-energy form of neutrinos, which has 10,000 times more energy than that of low-energy neutrinos emitted by the sun. Buried more than one-and-a-half kilometers beneath the South Pole, the National Science Foundation-funded AMANDA telescope is pointed into the ground instead of up at the sky, so the Earth can act as a filter for other forms of radiation. This means despite its location in the South Pole, the "eye" of the telescope is actually the northern skies.

Along with Barwick, other UCI researchers contributing to the AMANDA project are Lisa Gerhardt, Kyler Kuehn, John Kim, Pat Mock, David Ross, Wenqing Wu, Gaurang Yodh and Scott Young. Overall, 105 scientists from 20 universities and institutes in the United States, Europe and South America collaborate on AMANDA research. Their work is supported by a variety of international sources, including the U.S. National Science Foundation, the U.S. Department of Energy, and the UCI AENEAS Supercomputer Facility.

Tom Vasich
(949) 824-6455

Tom Vasich | UCI
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>