Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Pole telescope follows trail of neutrinos into deepest reaches of the universe

28.01.2003


Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events


Photo credit: The University of Wisconsin



A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.

An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is capable of tracking high-energy neutrinos — elusive subatomic particles — to their sources, which are emitted by these signature events. Their findings will be published in the Feb. 1. 2003, issue of the Astrophysical Journal.


"We now have a powerful new tool to scan the heavens," said Steven Barwick, a UCI physicist and corresponding author on the report. "This marks a significant breakthrough in the field of high-energy neutrino astronomy. AMANDA does what it was designed to do. Of all the high-energy particles emitted from the violent, energetic events in the universe, only neutrinos can directly provide information on these activities."

Neutrinos are invisible, uncharged, nearly massless particles that, unlike other kinds of radiation, speed through the universe unhindered by planets, stars, magnetic fields or entire galaxies. The particles are emitted by phenomena scientists believe can help them understand the origins of the universe.

Using the AMANDA detector — a massive, 400-meter tall structure consisting of 308 optical sensors each the size of a bowling ball — the physicists examined a previously unexplored region of the sky. They calculated that AMANDA could measure the direction of neutrinos within 3.5 degrees, which is accurate enough to reveal sources of high-energy neutrinos. They also determined that an improved version of the detector, AMANDA-II, which has been operational since January 2000, can provide as much as 10 times more information on the emission sources of these neutrinos.

First operational in 1997, the Antarctic Muon and Neutrino Detector Array (AMANDA) facility was established to study the high-energy form of neutrinos, which has 10,000 times more energy than that of low-energy neutrinos emitted by the sun. Buried more than one-and-a-half kilometers beneath the South Pole, the National Science Foundation-funded AMANDA telescope is pointed into the ground instead of up at the sky, so the Earth can act as a filter for other forms of radiation. This means despite its location in the South Pole, the "eye" of the telescope is actually the northern skies.

Along with Barwick, other UCI researchers contributing to the AMANDA project are Lisa Gerhardt, Kyler Kuehn, John Kim, Pat Mock, David Ross, Wenqing Wu, Gaurang Yodh and Scott Young. Overall, 105 scientists from 20 universities and institutes in the United States, Europe and South America collaborate on AMANDA research. Their work is supported by a variety of international sources, including the U.S. National Science Foundation, the U.S. Department of Energy, and the UCI AENEAS Supercomputer Facility.

Tom Vasich
(949) 824-6455
tmvasich@uci.edu

Tom Vasich | UCI
Further information:
http://amanda.uci.edu/
http://today.uci.edu/news/release_detail.asp?key=970

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>