Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

South Pole telescope follows trail of neutrinos into deepest reaches of the universe

28.01.2003


Researchers can now pinpoint direction of elusive subatomic particles key to understanding black holes, other cosmic events


Photo credit: The University of Wisconsin



A unique telescope buried in Antarctic ice promises unparalleled insight into such extraordinary phenomena as colliding black holes, gamma-ray bursts, the violent cores of distant galaxies and the wreckage of exploded stars.

An international team of physicists and astronomers, which includes UC Irvine researchers, report that the AMANDA telescope is capable of tracking high-energy neutrinos — elusive subatomic particles — to their sources, which are emitted by these signature events. Their findings will be published in the Feb. 1. 2003, issue of the Astrophysical Journal.


"We now have a powerful new tool to scan the heavens," said Steven Barwick, a UCI physicist and corresponding author on the report. "This marks a significant breakthrough in the field of high-energy neutrino astronomy. AMANDA does what it was designed to do. Of all the high-energy particles emitted from the violent, energetic events in the universe, only neutrinos can directly provide information on these activities."

Neutrinos are invisible, uncharged, nearly massless particles that, unlike other kinds of radiation, speed through the universe unhindered by planets, stars, magnetic fields or entire galaxies. The particles are emitted by phenomena scientists believe can help them understand the origins of the universe.

Using the AMANDA detector — a massive, 400-meter tall structure consisting of 308 optical sensors each the size of a bowling ball — the physicists examined a previously unexplored region of the sky. They calculated that AMANDA could measure the direction of neutrinos within 3.5 degrees, which is accurate enough to reveal sources of high-energy neutrinos. They also determined that an improved version of the detector, AMANDA-II, which has been operational since January 2000, can provide as much as 10 times more information on the emission sources of these neutrinos.

First operational in 1997, the Antarctic Muon and Neutrino Detector Array (AMANDA) facility was established to study the high-energy form of neutrinos, which has 10,000 times more energy than that of low-energy neutrinos emitted by the sun. Buried more than one-and-a-half kilometers beneath the South Pole, the National Science Foundation-funded AMANDA telescope is pointed into the ground instead of up at the sky, so the Earth can act as a filter for other forms of radiation. This means despite its location in the South Pole, the "eye" of the telescope is actually the northern skies.

Along with Barwick, other UCI researchers contributing to the AMANDA project are Lisa Gerhardt, Kyler Kuehn, John Kim, Pat Mock, David Ross, Wenqing Wu, Gaurang Yodh and Scott Young. Overall, 105 scientists from 20 universities and institutes in the United States, Europe and South America collaborate on AMANDA research. Their work is supported by a variety of international sources, including the U.S. National Science Foundation, the U.S. Department of Energy, and the UCI AENEAS Supercomputer Facility.

Tom Vasich
(949) 824-6455
tmvasich@uci.edu

Tom Vasich | UCI
Further information:
http://amanda.uci.edu/
http://today.uci.edu/news/release_detail.asp?key=970

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>