Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA on the trail of the earliest stars


Somewhere in the distant, old Universe, a population of stars hide undetected. They were the first to form after the birth of the Universe and are supposed to be far bigger in mass than any star visible today.

Astronomers know they must have been out there: only in this way could they solve the riddle of the origin and composition of stars in today’s Universe. A couple of ESA missions will help astronomers search for this elusive population.

When the Universe formed, there was just hydrogen and helium. Chemical elements such as oxygen, carbon, iron and so on were forged later, in the nuclear furnaces at the hearts of stars and then cast into space at the end of the star’s life. Astronomers call everything that is heavier than helium a ’metal’. All stars we can observe today contain metals. The youngest contain the most metals and astronomers call them population I stars. The oldest contain only some metals and astronomers call these population II stars.

Where do these metals come from? Astronomers have theorised that a first generation of stars, which they call population III, must have existed in the early Universe. This first generation of stars must have formed using only hydrogen and helium, the only elements available in the early cosmic history. After living for ’just’ a million years, they extinguished themselves, showering the metals they had created into space. The heavy elements lay dormant until they were collected into the next generation of stars and the first galaxies, sometime later.

The theory of population III stars suggests they are long dead in the local Universe. How can their existence then be confirmed? In the most distant realms of space, where what we observe is either very old or even extinguished, some signs of their existence might still be glimpsed. One mission that will help considerably in the search is the James Webb Space Telescope (JWST), ESA’s collaboration with NASA to replace the Hubble Space Telescope with a six-metre-class telescope. There are many questions for it to answer.

"We don’t really know what the first generation of stars are like and we don’t know where exactly they formed," says Peter Jakobsen, ESA’s Study Scientist for the JWST. "One of the biggest questions is whether the first stars formed in clumps or as isolated individuals. If they clumped, we’ll be able to see them much more easily and further away than if they didn’t." Even if JWST does not see the first stars directly, it will give astronomers an invaluable clue about how far away they are, allowing them to refine their theories. New research suggests that even if the population III stars are extremely far away, JWST would see them exploding as supernovae, at the ends of their individual lives.

In addition, some astronomers suspect that some gamma-ray bursts (GRBs) are created by the death of these earliest stars. Ironically, we may therefore already be seeing the farewell detonation of some population III stars. ESA’s new gamma-ray observatory, Integral, is perfectly placed to shed light on these violent events. It will indirectly help provide clues about population III stars. "I suspect that in the next ten years, we’ll know the answers to at least some of our questions about what went on in the early Universe," says Jakobsen. This includes learning more about the existence and role of the earliest stars.


The James Webb Space Telescope (JWST) is a collaboration between ESA and NASA. It is the successor to the Hubble Space Telescope and, with a six-metre mirror, it will be almost three times the size of HST. Engineers have designed the JWST to work best at infrared wavelengths. This will allow it to study the very distant Universe, looking for the first stars and galaxies that ever emerged. Current plans call for its launch in 2010.


The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays, and visible light. Integral was launched on a Russian Proton rocket in October 2002 into a highly elliptical orbit around Earth. Its principal targets are powerful phenomena known as supernova explosions, regions of the Universe thought to contain black holes and violent explosions known as gamma-ray bursts. In particular, when a gamma-ray burst goes off in Integral’s field of view, an automatic alert is sent to the world’s ground-based observatories within 30 seconds. This allows for rapid follow-up observations that are needed to analyse these mysterious phenomena.

Peter Jakobsen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>