Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA on the trail of the earliest stars


Somewhere in the distant, old Universe, a population of stars hide undetected. They were the first to form after the birth of the Universe and are supposed to be far bigger in mass than any star visible today.

Astronomers know they must have been out there: only in this way could they solve the riddle of the origin and composition of stars in today’s Universe. A couple of ESA missions will help astronomers search for this elusive population.

When the Universe formed, there was just hydrogen and helium. Chemical elements such as oxygen, carbon, iron and so on were forged later, in the nuclear furnaces at the hearts of stars and then cast into space at the end of the star’s life. Astronomers call everything that is heavier than helium a ’metal’. All stars we can observe today contain metals. The youngest contain the most metals and astronomers call them population I stars. The oldest contain only some metals and astronomers call these population II stars.

Where do these metals come from? Astronomers have theorised that a first generation of stars, which they call population III, must have existed in the early Universe. This first generation of stars must have formed using only hydrogen and helium, the only elements available in the early cosmic history. After living for ’just’ a million years, they extinguished themselves, showering the metals they had created into space. The heavy elements lay dormant until they were collected into the next generation of stars and the first galaxies, sometime later.

The theory of population III stars suggests they are long dead in the local Universe. How can their existence then be confirmed? In the most distant realms of space, where what we observe is either very old or even extinguished, some signs of their existence might still be glimpsed. One mission that will help considerably in the search is the James Webb Space Telescope (JWST), ESA’s collaboration with NASA to replace the Hubble Space Telescope with a six-metre-class telescope. There are many questions for it to answer.

"We don’t really know what the first generation of stars are like and we don’t know where exactly they formed," says Peter Jakobsen, ESA’s Study Scientist for the JWST. "One of the biggest questions is whether the first stars formed in clumps or as isolated individuals. If they clumped, we’ll be able to see them much more easily and further away than if they didn’t." Even if JWST does not see the first stars directly, it will give astronomers an invaluable clue about how far away they are, allowing them to refine their theories. New research suggests that even if the population III stars are extremely far away, JWST would see them exploding as supernovae, at the ends of their individual lives.

In addition, some astronomers suspect that some gamma-ray bursts (GRBs) are created by the death of these earliest stars. Ironically, we may therefore already be seeing the farewell detonation of some population III stars. ESA’s new gamma-ray observatory, Integral, is perfectly placed to shed light on these violent events. It will indirectly help provide clues about population III stars. "I suspect that in the next ten years, we’ll know the answers to at least some of our questions about what went on in the early Universe," says Jakobsen. This includes learning more about the existence and role of the earliest stars.


The James Webb Space Telescope (JWST) is a collaboration between ESA and NASA. It is the successor to the Hubble Space Telescope and, with a six-metre mirror, it will be almost three times the size of HST. Engineers have designed the JWST to work best at infrared wavelengths. This will allow it to study the very distant Universe, looking for the first stars and galaxies that ever emerged. Current plans call for its launch in 2010.


The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays, and visible light. Integral was launched on a Russian Proton rocket in October 2002 into a highly elliptical orbit around Earth. Its principal targets are powerful phenomena known as supernova explosions, regions of the Universe thought to contain black holes and violent explosions known as gamma-ray bursts. In particular, when a gamma-ray burst goes off in Integral’s field of view, an automatic alert is sent to the world’s ground-based observatories within 30 seconds. This allows for rapid follow-up observations that are needed to analyse these mysterious phenomena.

Peter Jakobsen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>