Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster than ever seen before – speeding electrons will be snapped by new UK attosecond ‘camera’

16.01.2003


Ultrafast lasers helping to make some of the shortest pulses of light ever seen in the UK will be at the heart of a new system to capture the movements of electrons as they whizz around the nucleus of atoms.



A UKP3.5 million research grant from the UK Research Councils’ Basic Technology Programme announced today has been awarded to a team of scientists to develop and build the first attosecond laser system capable of freeze-framing and controlling the motion of electrons.

Researchers hope that the attosecond system will reveal fundamental insights into atomic behaviour and may eventually lead to new applications in molecular and surface sciences, nano-scale and biological structures.


Because electrons are so light they move extremely quickly and their motion is measured in units of time called attoseconds. One attosecond is one billion-billionth of a second, and an electron orbits a hydrogen atom in just 24 attoseconds, or 24 billion-billionths of a second.

To capture the electron in motion the researchers will build a system to produce pulses of light lasting attoseconds. These pulses will then be strobed on to atoms in order to ‘freeze’ their electrons in motion.

“If you want to see a bullet ripping through a tomato you need to have a microsecond strobe to freeze the motion of the projectile,” said Dr John Tisch, Project Manager based at Imperial College London. “We want to see electron motion and for that we need attosecond resolution. Without attosecond probes, the electron motion would be just a ‘blur’.”

Electrons are behind all the fundamental processes in chemistry, biology and material sciences as they make all the ‘bonds’ in matter, joining atoms together to form larger systems like molecules.

“Changes in materials - be they molecules, solids or living tissue - can all be traced back to rearrangement of these bonding electrons,” said Professor Jon Marangos, Project Coordinator based at Imperial. “Attosecond pulses will give us the ability, for the first time, to measure and probe these very fast changes and shed new light on the dynamic processes that occur on this unexplored timescale.”

Currently the shortest measured laser pulse is around 4 femtoseconds (4000 attoseconds) and the shortest light pulses measured are around 600 attoseconds.

The planned length of the pulses in the UK attosecond system, generated using a technique known as high harmonic generation, will be about 200 attoseconds.

The award is made to a collaboration of groups led by Dr Tisch and Professor Marangos from the Department of Physics at Imperial College London.

The group comprises researchers from Imperial, Kings College London, and the universities of Oxford, Reading, Birmingham, Newcastle and the Rutherford Appleton Laboratory, Oxfordshire.

The groups will each build separate components and the final working system will be assembled and operated at Imperial College by 2005.

In total over 30 scientists are expected to contribute to the project, which will last for four years.

The overall cost of the project is UKP3.5 million, approximately half to be spent on equipment and half for research staff.

Tom Miller | alfa

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>