Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster than ever seen before – speeding electrons will be snapped by new UK attosecond ‘camera’

16.01.2003


Ultrafast lasers helping to make some of the shortest pulses of light ever seen in the UK will be at the heart of a new system to capture the movements of electrons as they whizz around the nucleus of atoms.



A UKP3.5 million research grant from the UK Research Councils’ Basic Technology Programme announced today has been awarded to a team of scientists to develop and build the first attosecond laser system capable of freeze-framing and controlling the motion of electrons.

Researchers hope that the attosecond system will reveal fundamental insights into atomic behaviour and may eventually lead to new applications in molecular and surface sciences, nano-scale and biological structures.


Because electrons are so light they move extremely quickly and their motion is measured in units of time called attoseconds. One attosecond is one billion-billionth of a second, and an electron orbits a hydrogen atom in just 24 attoseconds, or 24 billion-billionths of a second.

To capture the electron in motion the researchers will build a system to produce pulses of light lasting attoseconds. These pulses will then be strobed on to atoms in order to ‘freeze’ their electrons in motion.

“If you want to see a bullet ripping through a tomato you need to have a microsecond strobe to freeze the motion of the projectile,” said Dr John Tisch, Project Manager based at Imperial College London. “We want to see electron motion and for that we need attosecond resolution. Without attosecond probes, the electron motion would be just a ‘blur’.”

Electrons are behind all the fundamental processes in chemistry, biology and material sciences as they make all the ‘bonds’ in matter, joining atoms together to form larger systems like molecules.

“Changes in materials - be they molecules, solids or living tissue - can all be traced back to rearrangement of these bonding electrons,” said Professor Jon Marangos, Project Coordinator based at Imperial. “Attosecond pulses will give us the ability, for the first time, to measure and probe these very fast changes and shed new light on the dynamic processes that occur on this unexplored timescale.”

Currently the shortest measured laser pulse is around 4 femtoseconds (4000 attoseconds) and the shortest light pulses measured are around 600 attoseconds.

The planned length of the pulses in the UK attosecond system, generated using a technique known as high harmonic generation, will be about 200 attoseconds.

The award is made to a collaboration of groups led by Dr Tisch and Professor Marangos from the Department of Physics at Imperial College London.

The group comprises researchers from Imperial, Kings College London, and the universities of Oxford, Reading, Birmingham, Newcastle and the Rutherford Appleton Laboratory, Oxfordshire.

The groups will each build separate components and the final working system will be assembled and operated at Imperial College by 2005.

In total over 30 scientists are expected to contribute to the project, which will last for four years.

The overall cost of the project is UKP3.5 million, approximately half to be spent on equipment and half for research staff.

Tom Miller | alfa

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>