Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster than ever seen before – speeding electrons will be snapped by new UK attosecond ‘camera’

16.01.2003


Ultrafast lasers helping to make some of the shortest pulses of light ever seen in the UK will be at the heart of a new system to capture the movements of electrons as they whizz around the nucleus of atoms.



A UKP3.5 million research grant from the UK Research Councils’ Basic Technology Programme announced today has been awarded to a team of scientists to develop and build the first attosecond laser system capable of freeze-framing and controlling the motion of electrons.

Researchers hope that the attosecond system will reveal fundamental insights into atomic behaviour and may eventually lead to new applications in molecular and surface sciences, nano-scale and biological structures.


Because electrons are so light they move extremely quickly and their motion is measured in units of time called attoseconds. One attosecond is one billion-billionth of a second, and an electron orbits a hydrogen atom in just 24 attoseconds, or 24 billion-billionths of a second.

To capture the electron in motion the researchers will build a system to produce pulses of light lasting attoseconds. These pulses will then be strobed on to atoms in order to ‘freeze’ their electrons in motion.

“If you want to see a bullet ripping through a tomato you need to have a microsecond strobe to freeze the motion of the projectile,” said Dr John Tisch, Project Manager based at Imperial College London. “We want to see electron motion and for that we need attosecond resolution. Without attosecond probes, the electron motion would be just a ‘blur’.”

Electrons are behind all the fundamental processes in chemistry, biology and material sciences as they make all the ‘bonds’ in matter, joining atoms together to form larger systems like molecules.

“Changes in materials - be they molecules, solids or living tissue - can all be traced back to rearrangement of these bonding electrons,” said Professor Jon Marangos, Project Coordinator based at Imperial. “Attosecond pulses will give us the ability, for the first time, to measure and probe these very fast changes and shed new light on the dynamic processes that occur on this unexplored timescale.”

Currently the shortest measured laser pulse is around 4 femtoseconds (4000 attoseconds) and the shortest light pulses measured are around 600 attoseconds.

The planned length of the pulses in the UK attosecond system, generated using a technique known as high harmonic generation, will be about 200 attoseconds.

The award is made to a collaboration of groups led by Dr Tisch and Professor Marangos from the Department of Physics at Imperial College London.

The group comprises researchers from Imperial, Kings College London, and the universities of Oxford, Reading, Birmingham, Newcastle and the Rutherford Appleton Laboratory, Oxfordshire.

The groups will each build separate components and the final working system will be assembled and operated at Imperial College by 2005.

In total over 30 scientists are expected to contribute to the project, which will last for four years.

The overall cost of the project is UKP3.5 million, approximately half to be spent on equipment and half for research staff.

Tom Miller | alfa

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>