Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EIB lends Eur 300 million for CERN’s Major Collider

19.12.2002


The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC. A loan to enable construction of this major project was foreseen by CERN’s governing Council when it approved the LHC in 1996.

The EIB, the European Union’s long term financing institution, is supporting the project as it promotes EU policies for European Research & Development (R&D) and the dissemination of innovation. The EIB, as the EU’s policy driven bank, is committed to supporting European R&D with innovative financing. Recently, the EIB widened its scope for R&D financing to include large research infrastructure projects such as the CERN LHC project. In conjunction with the European Commission, the EIB is ready to finance the development of EU Advanced Technological Research and to implement the Sixth Research Framework Programme on R&D, which was launched last month in Brussels. The European Commission is in charge of implementing this EUR 17.5 billion Programme.

CERN’s Large Hadron Collider provides physicists with an unrivalled high-tech tool to study fundamental physics. It will enable the European Union to maintain its leading role in fundamental research in the field of particle physics. Although its raison d’être is essentially scientific, there are also important knock-on benefits for European high-tech industries. With the largest set of interconnected accelerators in the world, CERN is contributing to the “knowledge society” by providing a competitive working environment for direct research and the training of hundreds of top scientists and engineers each year.



CERN, the world’s leading particle physics research laboratory, is an international organization founded in 1954 by 12 European countries. It is a non-profit-making institution dedicated purely to fundamental research. In CERN today, 20 European states collaborate together with its observers (including Japan, the USA, the Russian Federation, Israel, UNESCO and the European Commission) as well as with numerous scientific institutions and industries worldwide in research into the fundamental laws of nature.

Mr Philippe Maystadt, EIB president, said: “With this loan, the EIB is helping to build a unique European research programme that is crucial to ensuring that Europe keeps the lead in fundamental and particle physics research. CERN provides the means to exploit new ideas and discoveries leading to important new applications. The added value of EIB’s support for the CERN project fits into the long term involvement of the Bank to mobilise collaborative funding streams in support of scientific excellence and international research cooperation.”

Prof. Luciano Maiani, Director General of CERN said: “The LHC is an extremely advanced facility that will keep Europe at the forefront of Particle Physics in the decades to come. It will produce new knowledge and is already stimulating important developments in technology transfer. The loan from the EIB underlines the European Union’s confidence in CERN, and is a powerful endorsement of Europe’s commitment to fundamental research at the highest level. ”

European Research Commissioner Mr Philippe Busquin said: “I welcome this initiative. The research institution the EU is helping contributes to Europe’s efforts to become a world-class leader in research and particle physics research. This funding method helps us to maintain this position, whilst at the same time providing valuable lessons in other fields. European science policy needs to go beyond the Framework Programme to successfully and efficiently mobilise various financial resources for science and technology.”

Christine Sutton | alfa

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>